DOI QR코드

DOI QR Code

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction

  • Lee, Dohun (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Jeong, Juwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
  • Received : 2020.03.02
  • Accepted : 2020.03.13
  • Published : 2020.08.31

Abstract

Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.

Keywords

References

  1. Z. P. Wu, X. F. Lu, S. Q. Zang, X. W. Lou, Adv. Funct. Mater, 2020.
  2. J. Dreon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard, Nano Energy, 2020, 70, 104495. https://doi.org/10.1016/j.nanoen.2020.104495
  3. J. Li, S. Hou, T. Liu, L. Wang, C. Mei, Y. Guo, L. Zhao, Chem. Eur. J, 2020, 26(9), 2013-2024. https://doi.org/10.1002/chem.201904085
  4. S. Liu, C. Xu, H. Yang, G. Qian, S. Hua, J. Liu, X. Zheng, X. Lu, Small, 2020, 16 (6).
  5. S. Mohebbi, M. Rostamizadeh, D. Kahforoushan, Fuel, 2020, 266, 117063. https://doi.org/10.1016/j.fuel.2020.117063
  6. Z. Yu, H. Jiang, D. Gu, J. Li, L. Wang, L. Shen, J. Electrochem. Sci. Technol, 2016, 7 (2), 170-178. https://doi.org/10.33961/JECST.2016.7.2.170
  7. R. Jiao, W. Zhang, H. Sun, Z. Zhu, Z. Yang, W. Liang, A. Li, Mater. Today Energy, 2020, 16, 100382. https://doi.org/10.1016/j.mtener.2020.100382
  8. I. Martinaiou, A. H. A. Monteverde Videla, N. Weidler, M. Kübler, W. D. Z. Wallace, S. Paul, S. Wagner, A. Shahraei, R. W. Stark, S. Specchia, U. I. Kramm, Appl. Catal. B, 2020, 262, 118217. https://doi.org/10.1016/j.apcatb.2019.118217
  9. Y. Ouyang, H. Cao, H. Wu, D. Wu, F. Wang, X. Fan, W. Yuan, M. He, L. Y. Zhang, C. M. Li, Appl. Catal. B, 2020, 265, 118606. https://doi.org/10.1016/j.apcatb.2020.118606
  10. Y. Hao, X. Wang, Y. Zheng, J. Shen, J. Yuan, A. J. Wang, L. Niu, S. Huang, Electrochim. Acta, 2016, 198, 127-134. https://doi.org/10.1016/j.electacta.2016.03.054
  11. S. Jayaraman, T. F. Jaramillo, S.-H. Baeck, E. W. McFarland, J. Phys. Chem. B, 2005, 109(48), 22958-22966. https://doi.org/10.1021/jp053053h
  12. H. L. Pang, X. H. Zhang, X. X. Zhong, B. Liu, X. G. Wei, Y. F. Kuang, J. H. Chen, J. Colloid Interface Sci., 2008, 319(1), 193-198. https://doi.org/10.1016/j.jcis.2007.10.046
  13. H.-J. Chun, D. B. Kim, D.-H. Lim, W.-D. Lee, H.-I. Lee, Int. J. Hydrogen Energy, 2010, 35(12), 6399-6408. https://doi.org/10.1016/j.ijhydene.2010.03.061
  14. M. A. Ghanem, A. M. Al-Mayouf, M. N. Shaddad, M. S. Alhoshan, M. N. Al-Shalawi, Int. J. Electrochem. Sci., 2015, 10, 3680-3692.
  15. X. L. Sui, Z. B. Wang, C. Z. Li, J. J. Zhang, L. Zhao, D. M. Gu, J. Power Sources, 2014, 272, 196-202. https://doi.org/10.1016/j.jpowsour.2014.08.074
  16. C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang, Langmuir, 2009, 25(13), 7711-7717. https://doi.org/10.1021/la900250w
  17. J. J. Zhang, X. L. Sui, L. Zhao, L. M. Zhang, D. M. Gu, Z. B. Wang, Int. J. Hydrogen Energy, 2017, 42(4), 2045-2053. https://doi.org/10.1016/j.ijhydene.2016.10.086
  18. P. Justin, G. Ranga Rao, Int. J. Hydrogen Energy, 2011, 36(10), 5875-5884. https://doi.org/10.1016/j.ijhydene.2011.01.122
  19. C. Z. Li, Z. B. Wang, X. L. Sui, L. M. Zhang, D. M. Gu, S. Gu, J. Mater. Chem. A, 2014, 2(47), 20139-20146. https://doi.org/10.1039/C4TA04594G
  20. L. Zhao, Z. B. Wang, J. L. Li, J. J. Zhang, X. L. Sui, L. M. Zhang, Electrochim. Acta, 2016, 189, 175-183. https://doi.org/10.1016/j.electacta.2015.12.072
  21. Q. Wang, Q. Wang, D. A. Zhang, J. Sun, L. L. Xing, X. Y. Xue, Chem. Asian J., 2014, 9(11), 3299-3306. https://doi.org/10.1002/asia.201402809
  22. G. R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.-D. Grunwaldt, A. Baiker, Chem. Mater., 2004, 16(6), 1126-1134. https://doi.org/10.1021/cm031057y
  23. X. W. Lou, H. C. Zeng, Chem. Mater, 2002, 14(11), 4781-4789. https://doi.org/10.1021/cm0206237
  24. S. Manivannan, J. Jeong, D. K. Kang, K. Kim, Electroanalysis, 2018, 30(1), 57-66. https://doi.org/10.1002/elan.201700451
  25. S. Manivannan, B. Krishnakumari, R. Ramaraj, Chem. Eng. J, 2012, 204-205, 16-22. https://doi.org/10.1016/j.cej.2012.07.092
  26. S. Manivannan, R. Ramaraj, Chem. Eng. J, 2012, 210, 195-202. https://doi.org/10.1016/j.cej.2012.08.085
  27. S. Manivannan, R. Ramaraj, J. Nanopart. Res, 2012, 14(6), 961. https://doi.org/10.1007/s11051-012-0961-y
  28. S. Manivannan, R. Ramaraj, Analyst, 2013, 138(6), 1733-1739. https://doi.org/10.1039/c3an36488g
  29. P. Rameshkumar, S. Manivannan, R. Ramaraj, J. Nanopart. Res, 2013, 15(5), 1639. https://doi.org/10.1007/s11051-013-1639-9
  30. I. Kang, W. S. Shin, S. Manivannan, Y. Seo, K. Kim, J. Electrochem. Sci. Technol.,2016, 7(4), 277-285. https://doi.org/10.33961/JECST.2016.7.4.277
  31. Y. Seo, S. Manivannan, I. Kang, W. S. Shin, K. Kim, J. Electrochem. Sci. Technol, 2017, 8(1), 25-34. https://doi.org/10.33961/JECST.2017.8.1.25
  32. S. Manivannan, I. Kang, K. Kim, Langmuir, 2016, 32(7), 1890-1898. https://doi.org/10.1021/acs.langmuir.5b04278
  33. S. Manivannan, Y. Seo, K. Kim, J. Electrochem. Sci. Technol, 2019, 10(3), 284-293. https://doi.org/10.33961/jecst.2019.03384
  34. S. Manivannan, I. Kang, Y. Seo, H. E. Jin, S. W. Lee, K. Kim, ACS Appl. Mater. Interfaces, 2017, 9(38), 32965-32976. https://doi.org/10.1021/acsami.7b06545