• Title/Summary/Keyword: silica-sol

Search Result 385, Processing Time 0.028 seconds

A Study on the Optical Characteristics of Multi-Layer Touch Panel Structure on Sapphire Glass (Sapphire Glass 기반 다층박막 터치패널구조의 광학특성 연구)

  • Kwak, Young Hoon;Moon, Seong Cheol;Lee, Ji Seon;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • A conductive oxide-based sapphire glass indium tin oxide/metal electrode and the optical coating, through patterning process was studied in excellent optical properties and integrated touch panel has a high strength. Indium tin oxide conductive oxides of the sapphire glass to 0.3 A at DC magnetron sputtering method of 10 min, gas flow Ar 10 Sccm Ar, $O_2$ 1.0 Sccm the formation conditions of the thin film after annealing at $550^{\circ}C$ for 30min was achieved through a 86% transmittance. In addition, the coating 130 nm hollow silica sol-gel was to improve the optical transmittance of the indium tin oxide to 91%. For the measurement by the modeling hollow silica sol by Macleod simulation and calculated the average values of silica part to the presence or absence in analogy to actual. Refractive index value and the actual value of the material on the simulation the transmittance difference is it does not completely match the air region similar to the actual value (transmission) could be confirmed that the measurement is set to a value of between 5 nm and 10 nm.

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook;Nam, Seung-Eun;Sea, Bong-Kuk;Ihm, Son-Ki;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1371-1378
    • /
    • 2004
  • A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

PVA/Silica Hybrid Membrane Containing Sulfonic Acid Croup for Direct Methanol Fuel Cells Application (Sulfonic acid group을 갖는 PVA/Silica Hybrid막의 DMFC 응용)

  • Young Moo Lee;Dae Sik Kim;Kwang Ho Shin;Ho Bum Park;Ji Won Rhim
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at various crosslinking agent content using sulfosuccinic acid (SSA) containing sulfonic acid group ($SO_3H)$. To reduce methanol permeability, silica was introduced to the membrane using sol-gel process. The hybrid membranes were studied in relation to proton conductivity and methanol permeability. It was found that both these properties were very dependent on the effect of SSA content as a crosslinking agent and as a donor of hydrophilic $SO_3H)$ group. The proton conductivities of these PVA/SSA/Silica membranes are in the range from $10^{-3}\;to\;10^{-2}$S/cm and the methanol permeabilities are in the range from $10^{-8}\;to\;10^{-7}\;cm^2/sec$.

Fabrication of Silica-Containing Breathable Waterproof Polyurethane Dispersion Film (Silica를 함유하는 Polyurethane dispersion 투습방수 Film의 제조)

  • Shin, Hyun-Ki;Huh, Man-Woo;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Silica-polyurethane hybrid breathable films were prepared and their breathabilities were assessed. Appropriately aggregated silica was prepared through sol-gel reaction of water glass and its particle size ranged 360~500nm. The polyurethane dispersion was prepared by the reaction of isophorone diisocyanate(IPDI) as diisocyanate and polytetramethylene glycol(PTMG) and dimethylol propionic acid(DMPA) as polyol, particle size ranging 30~120nm. The reaction between isocyanate and hydroxyl group to form urethane bonding was checked by the intensity of the stretch peak of isocyanate at $2270cm^{-1}$ in the FT-IR. The silica was incorporated into polyurethane dispersion and casted into film. It was shown that the incorporated silica(1~5wt.%) increased water vapour permeability of the films by 30~100%, and decreased the hydrostatic pressure by 10~40%. From the results, it could be concluded that the appropriate hybridization of silica can increase the breathability of polyurethane dispersion film, while minimizing the loss of hydrostatic pressure.

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

Preparation of Alumina-Silica Composite Coatings by Electrophoretic Deposition and their Electric Insulation Properties (EPD 방법을 이용한 알루미나-실리카 복합 코팅막의 제조와 전기절연 특성)

  • Ji, Hye;Kim, Doo Hwan;Park, Hee Jeong;Lim, Hyung Mi;Lee, Seung-Ho;Kim, Dae Sung;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.177-183
    • /
    • 2014
  • Alumina-silica composite coating layers were prepared by electrophoretic deposition (EPD) of plate-shaped alumina particles dispersed in a sol-gel binder, which was prepared by hydrolysis and the condensation reaction of methyltrimethoxysilane in the presence of colloidal silica. The microstructure and the electrical and thermal properties of the coatings were compared according to the EPD process parameter: voltage, time and the content of the plate-shaped alumina particles. The electrical insulation property of the coatings was measured by a voltage test. The coatings were prepared by EPD of the sol-gel binder with 5-30 wt% plate alumina particles on parallel electrodes at a distance of 2 cm for 1-10 min under an applied voltage of 10-30 V. The coatings experienced increased breakdown voltage with increasing thickness. However, the higher the thickness was, the smaller the breakdown voltage strength was. A breakdown voltage as high as 4.6 kV was observed with a $400{\mu}m$ thickness, and a breakdown voltage strength as high as 27 kV/mm was achieved for the sample under a $100{\mu}m$ thickness.

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles (유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조)

  • Lee, Chongmin;Kim, Jiwoong;Chang, Hankwon;Roh, Ki-Min;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.78-82
    • /
    • 2015
  • Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.

The Viscosity and Rheology of the Silica Dispersion System with UV Curable Monomers (UV 경화형 단량체계 실리카 분산체의 점도 특성 및 유변학적 거동)

  • Ahn, Jae-Beom;Cho, Bong-Sang;Yoo, Eui-Sang;Noh, Si-Tae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.292-299
    • /
    • 2012
  • We made 8 wt% silica dispersion system with fumed silica and photo curable acrylic monomer by beads mill process. These dispersions could be applied in organic/inorganic hybrid coating systems. These dispersions could be applied in organic/inorganic hybrid coating systems. The 4 species of photo curable acrylic monomer which was presence of hydroxyl group, different solubility parameter, and different molecular size were used in the silica dispersions. Stability of polar solvent, isopropyl alcohol, in silica dispersions was investigated. We investigated the stability of silica dispersions by using steady-state and dynamic rheology. As the monomer has hydroxyl group increased in mono and binary monomer silica dispersions, they showed non flocculated stable sol (loss modulus (G")> storage modulus (G')). When polar solvent IPA was added into slightly flocculated silica dispersions, they changed to non flocculated stable sol.