DOI QR코드

DOI QR Code

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology, Department of Chemical and Biomolecular Engineering, National Research Laboratory for Environmental Catalysis, Korea Advanced Institute of Science and Technology) ;
  • Nam, Seung-Eun (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Sea, Bong-Kuk (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Ihm, Son-Ki (Department of Chemical and Biomolecular Engineering, National Research Laboratory for Environmental Catalysis, Korea Advanced Institute of Science and Technology) ;
  • Lee, Kew-Ho (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology)
  • Published : 2004.09.20

Abstract

A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

Keywords

References

  1. De Lange, R. S. A.; Hekkink, J. H. A.; Keizer, K.; Burggraaf, A. J.J. Membr. Sci. 1995, 99, 57-75. https://doi.org/10.1016/0376-7388(94)00206-E
  2. De Lange, R. S. A.; Hekkink, J. H. A.; Keizer, K.; Burggraaf, A. J.J. Non-Cryst. Solids 1995, 191, 1-16. https://doi.org/10.1016/0022-3093(95)00291-X
  3. Nair, B. N.; Keizer, K.; Elferink, W. J.; Gilde, M. J.; Verweij, H.;Burggraaf, A. J. J. Membr. Sci. 1996, 116, 161-169. https://doi.org/10.1016/0376-7388(96)00036-1
  4. Brinker, C. J.; Ward, T. L.; Sehgal, R.; Raman, N. K.; Hietala, S.L.; Smith, D. M.; Hua, D.-W.; Headley, T. J. J. Membr. Sci. 1993,77, 165-179. https://doi.org/10.1016/0376-7388(93)85067-7
  5. Raman, N. K.; Brinker, C. J. J. Membr. Sci. 1995, 105, 273-279. https://doi.org/10.1016/0376-7388(95)00067-M
  6. Tsai, C.-Y.; Tam, S.-Y.; Lu, Y.; Brinker, C. J. J. Membr. Sci. 2000,169, 255-268. https://doi.org/10.1016/S0376-7388(99)00343-9
  7. De Vos, R. M.; Maier, W. F.; Verweij, H. J. Membr. Sci. 1999, 158,277-288. https://doi.org/10.1016/S0376-7388(99)00035-6
  8. Nair, B. N.; Elferink, W. J.; Keizer, K.; Verweij, H. J. Coll. Interf.Sci. 1996, 178, 565-570. https://doi.org/10.1006/jcis.1996.0152
  9. De Vos, R. M.; Verweij, H. J. Membr. Sci. 1998, 143, 37-51. https://doi.org/10.1016/S0376-7388(97)00334-7
  10. Kusakabe, K.; Ichiki, K.; Hayashi, J.-I.; Maeda, H.; Morooka, S.J. Membr. Sci. 1996, 115, 65-75. https://doi.org/10.1016/0376-7388(95)00290-1
  11. Sea, B.-K.; Kusakabe, K.; Morooka, S. J. Membr. Sci. 1997, 130,41-52. https://doi.org/10.1016/S0376-7388(97)00002-1
  12. Jiang, S.; Yan, Y.; Gavalas, G. R. J. Membr. Sci. 1995, 103, 211-218. https://doi.org/10.1016/0376-7388(95)00004-V
  13. Nair, B. N.; Yamaguchi, T.; Okubo, T.; Suematsu, H.; Keizer, K.;Nakao, S.-I. J. Membr. Sci. 1997, 135, 237-243. https://doi.org/10.1016/S0376-7388(97)00137-3
  14. Brinker, C. J.; Scherer, G. W. Sol-Gel Science; The Physics andChemistry of Sol-Gel Processing; Academic Press: New York,1990.
  15. Naito, M.; Nakahira, K.; Fukuda, Y.; Mori, H.; Tsubaki, J. J.Membr. Sci. 1997, 129, 263-269. https://doi.org/10.1016/S0376-7388(97)00020-3
  16. Lee, D.-W.; Lee, K.-H. J. Korean Ind. Eng. Chem. 2001, 12, 45-51.
  17. Jun, C.-S.; Lee, K.-H. J. Membr. Sci. 1999, 157, 107-115. https://doi.org/10.1016/S0376-7388(98)00366-4
  18. Perry, R. H.; Green, D. Perry's Chemical Engineers' Handbook;McGrow-Hill: New York, 1984.
  19. Simoes, M.; Assis, O. B. G.; Avaca, L. A. J. Non-Cryst. Solids2000, 273, 159. https://doi.org/10.1016/S0022-3093(00)00161-7

Cited by

  1. Preparation of homogeneous mullite fibrous porous ceramics consolidated by propylene oxide vol.45, pp.2, 2004, https://doi.org/10.1016/j.ceramint.2018.10.174