DOI QR코드

DOI QR Code

A Study on the Optical Characteristics of Multi-Layer Touch Panel Structure on Sapphire Glass

Sapphire Glass 기반 다층박막 터치패널구조의 광학특성 연구

  • 곽영훈 (한국산업기술대학교 신소재공학과) ;
  • 문성철 (한국산업기술대학교 신소재공학과) ;
  • 이지선 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • Received : 2016.01.10
  • Accepted : 2016.02.24
  • Published : 2016.03.01

Abstract

A conductive oxide-based sapphire glass indium tin oxide/metal electrode and the optical coating, through patterning process was studied in excellent optical properties and integrated touch panel has a high strength. Indium tin oxide conductive oxides of the sapphire glass to 0.3 A at DC magnetron sputtering method of 10 min, gas flow Ar 10 Sccm Ar, $O_2$ 1.0 Sccm the formation conditions of the thin film after annealing at $550^{\circ}C$ for 30min was achieved through a 86% transmittance. In addition, the coating 130 nm hollow silica sol-gel was to improve the optical transmittance of the indium tin oxide to 91%. For the measurement by the modeling hollow silica sol by Macleod simulation and calculated the average values of silica part to the presence or absence in analogy to actual. Refractive index value and the actual value of the material on the simulation the transmittance difference is it does not completely match the air region similar to the actual value (transmission) could be confirmed that the measurement is set to a value of between 5 nm and 10 nm.

Keywords

References

  1. H. K. Pulker, Coatings on glass (Elsevier, Newyork, 1984).
  2. J. D. Rancourt, Optical Thin Films (MacMillan Publishing Company, Newyork, 1987). p.621
  3. H. Anders, The Focal Press, 180 (1967).
  4. H. Hanaoka, O. Ito, K. Kaneko, and H. Kondo, SID Symposium Digest of Technical Papers, 29, 258 (1998). [DOI: http://dx.doi.org/10.1889/1.1833741]
  5. B. E. Yoldas, Appl. Opt., 19, 1425 (1980). [DOI:http://dx.doi.org/10.1364/AO.19.001425]
  6. B. Ren, X. Liu, M. Wang, and Y. Xu, Rare Metals, 25, 137 (2006). [DOI:http://dx.doi.org/10.1016/S1001-0521(07)60060-6]
  7. M. Higuchi, S. Uekusa, R. nakano, and K. Yokogawa, J. Appl. Phys. 74, 6710 (1993). [DOI: http://dx.doi.org/10.1063/1.355093]
  8. D. I. Kim, Renewable Energy, 36, 525 (2011). [DOI: http://dx.doi.org/10.1016/j.renene.2010.06.031]
  9. Y. S. Kim, S. B. Heo, H. M. Lee, Y. J. Lee, I. S. Kim, M. S. Kang, D. H. Choi, B. H. Lee, M. G. Kim and D. I. Kim, Appl. Surf. Sci., 258, 3903 (2012). [DOI: http://dx.doi.org/10.1016/j.apsusc.2011.12.057]
  10. Caruso, F. Caruso. R. A. Mohwald, H., Science, 282, 1111 (1998). https://doi.org/10.1126/science.282.5391.1111
  11. X. Xu, S. A. Asher, J. Am. Chem. Soc., 126, 7940 (2004). [DOI: http://dx.doi.org/10.1021/ja049453k]
  12. Y. Wang, L. Cai, Y. Xia, Adv. Mater., 17, 473 (2005). [DOI: http://dx.doi.org/10.1002/adma.200401416]
  13. R. Swanepoel, J. Phys. E. Sci. Instrum., 16, 1214 (1983). [DOI: http://dx.doi.org/10.1088/0022-3735/16/12/023]
  14. M. Tilsch, K. Hendrix, and P. Verly, Appl. Opt., 45, 1544 (2006). [DOI: http://dx.doi.org/10.1364/AO.45.001544]