• Title/Summary/Keyword: silica fume concrete

Search Result 497, Processing Time 0.032 seconds

Effect of siliceous powder's particle size on the workability and strength of UHPC (석영미분말의 입자크기가 UHPC의 유동성 및 강도에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.441-444
    • /
    • 2008
  • Ultra high performance concrete (UHPC) in this study is composed of sand, cement, silica fume, siliceous powder, superplasticizer and steel fiber. UHPC is composed of fine mineral particles below 0.5mm in diameter. In general, siliceous powder improves the mechanical properties of concrete by physical and chemical effect. Physical effect is related with filling interior voids which weaken the mechanical properties and chemical effect with reaction of $SiO_2$ with cement hydrates in a condition of high temperature and pressure. We evaluated the effect of siliceous powder's particle size on the mechanical properties of ultra high performance concrete in air pressure and $90^{\circ}C$ steam curing condition. siliceous powder's particle size in this study is in the range of $2{\mu}m$ to $26{\mu}m$. Fluidity in a fresh concrete, compressive strength, ultimate strain, elastic modulus and flexural strength in a hardened concrete was evaluated. We could find out that the smaller siliceous powder's particle size is, the better the fluidity and strength properties.

  • PDF

Optimum Mix Design of High-Performance Concrete for Bridge Deck Overlay by Statistical Method (통계적 방법에 의한 교면포장용 고성능 콘크리트의 최적배합비 도출)

  • Won Jong-Pil;Seo Jung-Min;Lee Chang-Soo;Park Hae-Kyun;Lee Myeong-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.559-567
    • /
    • 2005
  • The objective of this study is to optimize the use of mineral admixtures (silica fume, fly ash, and blast furnace slag) in high-performance concrete for bridge deck overlay. For this purpose, high-performance concrete, incorporating mineral admixtures, was tested for compressive strength and permeability. The Box Behnken design was used to determine the optimum mix proportions of the mineral admixtures. The optimized mix compositions were then technically evaluated. Test results are compare with the performance specification for high performance concrete overlay on bridge deck. The optimum mix proportions were shown to possess acceptable properties. Also, it is possible to save the construction and materials costs result from a reduction In actual material cost and from the use of widely avaliable truck mixers instead of mobile mixers.

Experimental Study on the Evaluation of frost-Resistance of High-Strength Concrete Damaged by frost at Early Age in Cold Climates (동절기 초기재령에서 동해를 받은 고강도콘크리트의 내동해성 평가에 관한 실험적 연구)

  • 권영진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2001
  • One of ways to make high-strength concrete is for the mix contain particles graded down to the finest size : this is achieved by the use of fly ash, silica fume which fills the spaces between the cement particle and between the aggregate and the cement particles. And, the mix needs a sufficient workability. This is achieved by the use of a superplasticizer. This study is to investigate frost resistance of high-strength concrete at early age, with ratio of tensile strength and recovery of compressive strength, when high-strength concrete is placed in cold climates. According to this study, it is necessary to ensure 4 % of air content, 5 kgf/$\textrm{cm}^2$ of tensile strength, at least, for frost resistance of high-strength concrete at early age.

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water (혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Yoo Jae-Kang;Kim Dong-Seuk;Park Sang-Joon;Won Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

  • Toghroli, Ali;Darvishmoghaddam, Ehsan;Zandi, Yousef;Parvan, Mahdi;Safa, Maryam;Abdullahi, Muazu Mohammed;Heydari, Abbas;Wakil, Karzan;Gebreel, Saad A.M.;Khorami, Majid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.525-530
    • /
    • 2018
  • As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

The Effect of Mixing Ratio of Blast Furnace Slag and Fly Ash on Material Properties of 80MPa High Strength Concrete with Ternary Cement (고로슬래그와 플라이애시 대체율이 80MPa 3성분계 고강도콘크리트의 재료물성에 미치는 영향)

  • Lee, Bum-Sik;Jun, Myoung-Hoon;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.287-297
    • /
    • 2012
  • To develop 80MPa-high strength concrete with ternary cement used in OPC, blast-furnance slag, and fly ash, mixing ratio of blast-furnace slag and fly ash was evaluated in material characteristics before and after hardening of the high strength concrete. According to the evaluated results of material characteristics before and after hardening of the high strength concrete, the flowability and long-term compressive strength increase up to 30% mixing ratio of blast-furnace slag and fly ash. Also, it is superior to characteristics of length change and neutralization due to the use of mineral admixture when compared in test sample mixed with OPC. The evaluated results show that material characteristics of the high strength concrete was the most outstanding performance at blast-furnace slag of 25% and fly ash of 15%. The result of this study will be useful for the development of high strength concrete as a substitute of costly silica fume in the near future.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

Modelling the flexural strength of mortars containing different mineral admixtures via GEP and RA

  • Saridemir, Mustafa
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.717-724
    • /
    • 2017
  • In this paper, four formulas are proposed via gene expression programming (GEP)-based models and regression analysis (RA) to predict the flexural strength ($f_s$) values of mortars containing different mineral admixtures that are ground granulated blast-furnace slag (GGBFS), silica fume (SF) and fly ash (FA) at different ages. Three formulas obtained from the GEP-I, GEP-II and GEP-III models are constituted to predict the $f_s$ values from the age of specimen, water-binder ratio and compressive strength. Besides, one formula obtained from the RA is constituted to predict the $f_s$ values from the compressive strength. To achieve these formulas in the GEP and RA models, 972 data of the experimental studies presented with mortar mixtures were gathered from the literatures. 734 data of the experimental studies are divided without pre-planned for these formulas achieved from the training and testing sets of GEP and RA models. Beside, these formulas are validated with 238 data of experimental studies un-employed in training and testing sets. The $f_s$ results obtained from the training, testing and validation sets of these formulas are compared with the results obtained from the experimental studies and the formulas given in the literature for concrete. These comparisons show that the results of the formulas obtained from the GEP and RA models appear to well compatible with the experimental results and find to be very credible according to the results of other formulas.

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.