• Title/Summary/Keyword: signature-based detection

Search Result 203, Processing Time 0.026 seconds

A Development of Malware Detection Tool based on Signature Patterns (시그너처 패턴기반의 악성코드 탐색도구의 개발)

  • Woo Chong-Woo;Ha Kyoung-Hui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.127-136
    • /
    • 2005
  • Recently, the damages occurring from the malware are increasing rapidly, regardless of continuous development of commercial vaccines . Generally, the vaccine detects well-known malware effectively, but it becomes helpless without any information against the unknown ones. Also, the malware generates its variations fast enough, so that the vaccine always gets behind in its updates. In this paper, we are describing a design and development of malware detection tool, which can detect such malware effectively. We first analyze the general functionality of the malware, and then extracts specific signatures. Such that, we can actively cope with a malware, which may come in previous type, a new type, and any of its mutations also.

  • PDF

A Study on Machine Learning Based Anti-Analysis Technique Detection Using N-gram Opcode (N-gram Opcode를 활용한 머신러닝 기반의 분석 방지 보호 기법 탐지 방안 연구)

  • Kim, Hee Yeon;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.181-192
    • /
    • 2022
  • The emergence of new malware is incapacitating existing signature-based malware detection techniques., and applying various anti-analysis techniques makes it difficult to analyze. Recent studies related to signature-based malware detection have limitations in that malware creators can easily bypass them. Therefore, in this study, we try to build a machine learning model that can detect and classify the anti-analysis techniques of packers applied to malware, not using the characteristics of the malware itself. In this study, the n-gram opcodes are extracted from the malicious binary to which various anti-analysis techniques of the commercial packers are applied, and the features are extracted by using TF-IDF, and through this, each anti-analysis technique is detected and classified. In this study, real-world malware samples packed using The mida and VMProtect with multiple anti-analysis techniques were trained and tested with 6 machine learning models, and it constructed the optimal model showing 81.25% accuracy for The mida and 95.65% accuracy for VMProtect.

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

  • El-Semary, Aly M.;Mostafa, Mostafa Gadal-Haqq M.
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.481-500
    • /
    • 2010
  • The Internet explosion and the increase in crucial web applications such as ebanking and e-commerce, make essential the need for network security tools. One of such tools is an Intrusion detection system which can be classified based on detection approachs as being signature-based or anomaly-based. Even though intrusion detection systems are well defined, their cooperation with each other to detect attacks needs to be addressed. Consequently, a new architecture that allows them to cooperate in detecting attacks is proposed. The architecture uses Software Agents to provide scalability and distributability. It works in two modes: learning and detection. During learning mode, it generates a profile for each individual system using a fuzzy data mining algorithm. During detection mode, each system uses the FuzzyJess to match network traffic against its profile. The architecture was tested against a standard data set produced by MIT's Lincoln Laboratory and the primary results show its efficiency and capability to detect attacks. Finally, two new methods, the memory-window and memoryless-window, were developed for extracting useful parameters from raw packets. The parameters are used as detection metrics.

A Malware Variants Detection Method based on Behavior Similarity (행위 유사도 기반 변종 악성코드 탐지 방법)

  • Joe, Woo-Jin;Kim, Hyong-Shik
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.25-32
    • /
    • 2019
  • While the development of the Internet has made information more accessible, this also has provided a variety of intrusion paths for malicious programs. Traditional Signature-based malware-detectors cannot identify new malware. Although Dynamic Analysis may analyze new malware that the Signature cannot do, it still is inefficient for detecting variants while most of the behaviors are similar. In this paper, we propose a detection method using behavioral similarity with existing malicious codes, assuming that they have parallel patterns. The proposed method is to extract the behavior targets common to variants and detect programs that have similar targets. Here, we verified behavioral similarities between variants through the conducted experiments with 1,000 malicious codes.

Detection of System Abnormal State by Cyber Attack (사이버 공격에 의한 시스템 이상상태 탐지 기법)

  • Yoon, Yeo-jeong;Jung, You-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1027-1037
    • /
    • 2019
  • Conventional cyber-attack detection solutions are generally based on signature-based or malicious behavior analysis so that have had difficulty in detecting unknown method-based attacks. Since the various information occurring all the time reflects the state of the system, by modeling it in a steady state and detecting an abnormal state, an unknown attack can be detected. Since a variety of system information occurs in a string form, word embedding, ie, techniques for converting strings into vectors preserving their order and semantics, can be used for modeling and detection. Novelty Detection, which is a technique for detecting a small number of abnormal data in a plurality of normal data, can be performed in order to detect an abnormal condition. This paper proposes a method to detect system anomaly by cyber attack using embedding and novelty detection.

Control Flow Checking at Virtual Edges

  • Liu, LiPing;Ci, LinLin;Liu, Wei;Yang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.396-413
    • /
    • 2017
  • Dynamically checking the integrity of software at run-time is always a hot and difficult spot for trusted computing. Control-flow integrity is a basic and important safety property of software integrity. Many classic and emerging security attacks who introduce illegal control-flow to applications can cause unpredictable behaviors of computer-based systems. In this paper, we present a software-based approach to checking violation of control flow integrity at run-time. This paper proposes a high-performance and low-overhead software control flow checking solution, control flow checking at virtual edges (CFCVE). CFCVE assigns a unique signature to each basic block and then inserts a virtual vertex into each edge at compile time. This together with insertion of signature updating instructions and checking instructions into corresponding vertexes and virtual vertexes. Control flow faults can be detected by comparing the run-time signature with the saved one at compile time. Our experimental results show that CFCVE incurs only 10.61% performance overhead on average for several C benchmark programs and the average undetected error rate is only 9.29%. Compared with previous techniques, CFCVE has the characteristics of both high fault coverage and low memory and performance overhead.

Identification of Attack Group using Malware and Packer Detection (악성코드 및 패커 탐지를 이용한 공격 그룹 판별)

  • Moon, Heaeun;Sung, Joonyoung;Lee, Hyunsik;Jang, Gyeongik;Kwak, Kiyong;Woo, Sangtae
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.106-112
    • /
    • 2018
  • Recently, the number of cyber attacks using malicious code has increased. Various types of malicious code detection techniques have been researched for several years as the damage has increased. In recent years, profiling techniques have been used to identify attack groups. This paper focuses on the identification of attack groups using a detection technique that does not involve malicious code detection. The attacker is identified by using a string or a code signature of the malicious code. In addition, the detection rate is increased by adding a technique to confirm the packing file. We use Yara as a detection technique. We have research about RAT (remote access tool) that is mainly used in attack groups. Further, this paper develops a ruleset using malicious code and packer main feature signatures for RAT which is mainly used by the attack groups. It is possible to detect the attacker by detecting RAT based on the newly created ruleset.

An Architecture Design of Distributed Internet Worm Detection System for Fast Response

  • Lim, Jung-Muk;Han, Young-Ju;Chung, Tai-Myoung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.161-164
    • /
    • 2005
  • As the power of influence of the Internet grows steadily, attacks against the Internet can cause enormous monetary damages nowadays. A worm can not only replicate itself like a virus but also propagate itself across the Internet. So it infects vulnerable hosts in the Internet and then downgrades the overall performance of the Internet or makes the Internet not to work. To response this, worm detection and prevention technologies are developed. The worm detection technologies are classified into two categories, host based detection and network based detection. Host based detection methods are a method which checks the files that worms make, a method which checks the integrity of the file systems and so on. Network based detection methods are a misuse detection method which compares traffic payloads with worm signatures and anomaly detection methods which check inbound/outbound scan rates, ICMP host/port unreachable message rates, and TCP RST packet rates. However, single detection methods like the aforementioned can't response worms' attacks effectively because worms attack the Internet in the distributed fashion. In this paper, we propose a design of distributed worm detection system to overcome the inefficiency. Existing distributed network intrusion detection systems cooperate with each other only with their own information. Unlike this, in our proposed system, a worm detection system on a network in which worms select targets and a worm detection system on a network in which worms propagate themselves cooperate with each other with the direction-aware information in terms of worm's lifecycle. The direction-aware information includes the moving direction of worms and the service port attacked by worms. In this way, we can not only reduce false positive rate of the system but also prevent worms from propagating themselves across the Internet through dispersing the confirmed worm signature.

  • PDF

A Detection Rule Exchange Mechanism for the Collaborative Intrusion Detection in Defense-ESM (국방통합보안관제체계에서의 협업 침입탐지를 위한 탐지규칙 교환 기법)

  • Lee, Yun-Hwan;Lee, Soo-Jin
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.57-69
    • /
    • 2011
  • Many heterogeneous Intrusion Detection Systems(IDSs) based in misuse detection technique including the self-developed IDS are now operating in Defense-ESM(Enterprise Security Management System). IDS based on misuse detection may have different capability in the intrusion detection process according to the frequency and quality of its signature update. This makes the integration and collaboration with other IDSs more difficult. In this paper, with the purpose of creating the proper foundation for integration and collaboration between heterogeneous IDSs being operated in Defense-ESM, we propose an effective mechanism that can enable one IDS to propagate its new detection rules to other IDSs and receive updated rules from others. We also prove the performance of rule exchange and application possibility to defense environment through the implementation and experiment.

Video Matching Algorithm of Content-Based Video Copy Detection for Copyright Protection (저작권보호를 위한 내용기반 비디오 복사검출의 비디오 정합 알고리즘)

  • Hyun, Ki-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.315-322
    • /
    • 2008
  • Searching a location of the copied video in video database, signatures should be robust to video reediting, channel noise, time variation of frame rate. Several kinds of signatures has been proposed. Ordinal signature, one of them, is difficult to describe the spatial characteristics of frame due to the site of fixed window, $N{\times}N$, which is compute the average gray value. In this paper, I studied an algorithm of sequence matching in video copy detection for the copyright protection, employing the R-tree index method for retrieval and suggesting a robust ordinal signatures for the original video clips and the same signatures of the pirated video. Robust ordinal has a 2-dimensional vector structures that has a strong to the noise and the variation of the frame rate. Also, it express as MBR form in search space of R-tree. Moreover, I focus on building a video copy detection method into which content publishers register their valuable digital content. The video copy detection algorithms compares the web content to the registered content and notifies the content owners of illegal copies. Experimental results show the proposed method is improve the video matching rate and it has a characteristics of signature suitable to the large video databases.

  • PDF