• Title/Summary/Keyword: signature extraction

Search Result 63, Processing Time 0.02 seconds

An Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model

  • Yoon, Seok-Hwan;Min, Joonyoung
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.621-632
    • /
    • 2013
  • The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.

A Study of the extraction of a Hand Vein Pattern (손정맥 패턴 추출에 관한 연구)

  • Kim, Jong-Seok;Baek, Han-Wook;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3022-3024
    • /
    • 2000
  • Biometrics is the electronic recognition of individuals achieved through a process of extracting, and then verifying, features which are unique to that individual. This field is rapidly evolving technology that has to be widely adopted in a broad range of applications. Many methods have been studied such as extraction of the facial features, the voice, the vein and even a person's signature. Among biometrics, a hand veins provide large, robust, stable, hidden biometric features. Hand vein patterns have been proven to be absolutely unique by Cambridge Consultants Ltd. Because of this advantage, hand vein recognition are recently developing field in the field of a security.

  • PDF

A Nucleotide Sequence Signature Extraction Method based on Position-Specific Relative Base Frequency Differences (위치기반 상대빈도차 기반의 바이러스 염기서열 시그너쳐 추출 기법)

  • Hwang, Gyeong-Sun;Lee, Hye-Ri;Lee, Geon-Myeong;Lee, Chan-Hui;Yun, Hyeong-U;Kim, Seong-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.167-170
    • /
    • 2007
  • 동일한 집단에 속하는 개체를 다른 집단에 속하는 개체로부터 구별할 수 있는 염기의 특징을 해당 집단의 시그너쳐라고 한다. 학습 데이터는 두 집단에 속하는 염기서열들이고, 염기서열에 대한 시그너쳐는 개체를 다른 집단과 구별할 수 있는 위치의 염기들로 구성된 서열이다. 제안한 방법에서는 각 집단에 대해서 위치별로 염기의 발생빈도를 계산하고, 가장 발생빈도가 높은 염기를 결정한 다음, 다른 집단의 대응 위치에서 해당 염기의 빈도를 계산하여, 빈도차이가 지정한 분류임계값 이상이면, 해당 위치의 염기를 시그너쳐를 구성하는 특징으로 간주한다. 시그너쳐를 대한 임의의 염기서열에 대한 부합정도는 시그너쳐에 속하는 염기의 학습집단에서의 상대빈도값을 가중치로 하여 계산한다. 임의의 염기서열이 특정 집단에 속하는지 판단하기 위해서는 해당 집단의 시그너쳐에 대한 부합정도를 계산하게 되는데, 부합정도가 얼마이상이 되어야 해당 집단에 속하는 것으로 간주할지 기준이 되는 임계값을 엄밀도 임계값이라고 한다. 엄밀도 임계값은 학습 데이터 집합에 대해서 주어진 시그너쳐에 대한 엄밀도 임계값이 민감도와 특이도를 최대로 하는 것을 선택한다. 제안한 방법을 구현한 바이오인포매틱스 도구를 개발하여, 한국형 HIV-1 바이러스 시그너쳐 추출에 적용하여 분류특성이 우수한 시그너쳐를 추출할 수 있음을 확인하였다.

  • PDF

Extraction of the aquaculture farms information from the Landsat- TM imagery of the Younggwang coastal area

  • Shanmugam, P.;Ahn, Yu-Hwan;Yoo, Hong-Ryong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.493-498
    • /
    • 2004
  • The objective of the present study is to compare various conventional and recently evolved satellite image-processing techniques and to ascertain the best possible technique that can identify and position of aquaculture farms accurately in and around the Younggwang coastal area. Several conventional techniques performed to extract such information fiom the Landsat-TM imagery do not seem to yield better information about the aquaculture farms, and lead to misclassification. The large errors between the actual and extracted aquaculture farm information are due to existence of spectral confusion and inadequate spatial resolution of the sensor. This leads to possible occurrence of mixture pixels or 'mixels' of the source of errors in the classification techniques. Understanding the confusing and mixture pixel problems requires the development of efficient methods that can enable more reliable extraction of aquaculture farm information. Thus, the more recently evolved methods such as the step-by-step partial spectral end-member extraction and linear spectral unmixing methods are introduced. The farmer one assumes that an end-member, which is often referred to as 'spectrally pure signature' of a target feature, does not appear to be a spectrally pure form, but always mix with the other features at certain proportions. The assumption of the linear spectral unmxing is that the measured reflectance of a pixel is the linear sum of the reflectance of the mixture components that make up that pixel. The classification accuracy of the step-by-step partial end-member extraction improved significantly compared to that obtained from the traditional supervised classifiers. However, this method did not distinguish the aquaculture ponds and non-aquaculture ponds within the region of the aquaculture farming areas. In contrast, the linear spectral unmixing model produced a set of fraction images for the aquaculture, water and soil. Of these, the aquaculture fraction yields good estimates about the proportion of the aquaculture farm in each pixel. The acquired proportion was compared with the values of NDVI and both are positively correlated (R$^2$ =0.91), indicating the reliability of the sub-pixel classification.ixel classification.

  • PDF

A Verification Method for Handwritten text in Off-line Environment Using Dynamic Programming (동적 프로그래밍을 이용한 오프라인 환경의 문서에 대한 필적 분석 방법)

  • Kim, Se-Hoon;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1009-1015
    • /
    • 2009
  • Handwriting verification is a technique of distinguishing the same person's handwriting specimen from imitations with any two or more texts using one's handwriting individuality. This paper suggests an effective verification method for the handwritten signature or text on the off-line environment using pattern recognition technology. The core processes of the method which has been researched in this paper are extraction of letter area, extraction of features employing structural characteristics of handwritten text, feature analysis employing DTW(Dynamic Time Warping) algorithm and PCA(Principal Component Analysis). The experimental results show a superior performance of the suggested method.

Characteristic Signature Extraction using the Base Distribution Substitution Comparison (염기분포와 대치 비교를 이용한 염기서열 집단의 고유 시그너쳐 추출)

  • Hwang, Gyeong-Sun;Lee, Hye-Ri;Lee, Geon-Myeong;Kim, Seong-Su;Lee, Chan-Hui;Lee, Seong-Deok;Yun, Hyeong-U
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.419-422
    • /
    • 2007
  • 유전자 변이가 쉽게 일어나는 바이러스 등은 변이 계통에 따라 집단을 형성하게 된다. 이러한 집단들에 대한 분석은 해당 바이러스 집단에 대한 추적, 백신 및 치료약 개발에서 필수적이다. 어떤 집단의 염기 서열의 특성을 효과적으로 표현하는 패턴을 시그너쳐라 하며, 이러한 시그너쳐는 특정 염기서열 집단의 고유한 특성을 나타내면서 다른 집단과 구별되는 정보를 포함하는 것이 바람직하다. 이 논문에서는 가능한 후보 시그너쳐들을 염기분포를 이용하여 생성해가면서, 시그너쳐 해당부위의 염기를 상대 서열집단의 공통 서열의 염기로 변환하여 집단간의 상대거리를 측정함으로써, 후보 시그너쳐에 의한 집단의 고유성질 표현능력과 집단간 차별화 능력을 고려하여 시그너쳐를 추출하는 방법을 제안한다.

  • PDF

Extraction of Spatial Characteristics of Cadastral Land Category from RapidEye Satellite Images

  • La, Phu Hien;Huh, Yong;Eo, Yang Dam;Lee, Soo Bong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.581-590
    • /
    • 2014
  • With rapid land development, land category should be updated on a regular basis. However, manual field surveys have certain limitations. In this study, attempts were made to extract a feature vector considering spectral signature by parcel, PIMP (Percent Imperviousness), texture, and VIs (Vegetation Indices) based on RapidEye satellite image and cadastral map. A total of nine land categories in which feature vectors were significantly extracted from the images were selected and classified using SVM (Support Vector Machine). According to accuracy assessment, by comparing the cadastral map and classification result, the overall accuracy was 0.74. In the paddy-field category, in particular, PO acc. (producer's accuracy) and US acc. (user's accuracy) were highest at 0.85 and 0.86, respectively.

Region Based Object Tracking with Snakes (스네이크를 이용한 영역기반 물체추적 알고리즘)

  • Kim, Young-Sub;Han, Kyu-Bum;Baek, Yoon-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.307-312
    • /
    • 2001
  • In this paper, we proposed the object-tracking algorithm that recognizes and estimates the any shaped and size objects using vision system. For the extraction of the object from the background of the acquired images, spatio-temporal filter and signature parsing algorithm are used. Specially, for the solution of correspondence problem of the multiple objects tracking, we compute snake energy and position information of the target objects. Through the real-time tracking experiment, we verified the effectiveness of the suggested tracking algorithm.

  • PDF

Extraction of Computer Virus Behavior by Using Language Compression Algorithm (언어 압축 알고리즘을 이용한 컴퓨터 바이러스의 행위 패턴 추출)

  • 임영환;위규범
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.754-756
    • /
    • 2001
  • 컴퓨터 사용증가와 함께 컴퓨터 바이러스 또한 증가하고 있다. 바이러스 검사 프로그램은 바이러스의 특정 문자열(signature)을 찾아 문자열 검색도구와 프로세스의 행동을 모니터링 하는 감시도구(general purpose monitor)의 두 가지 형태가 있으며, 각각은 미 발견 바이러스에 대한 취약성과 시스템 오버헤드를 단점으로 가지고 있다. 또한, 최근에 제안된 면역 시스템은 계산 복잡도나 시스템 구성면에서 지나친 부담을 가지고 있다. 본 논문에서는 바이러스들의 행위를 추출 할 수 있도록 하기 위하여, 언어 압축 알고리즘을 이용하여 바이러스 행동 패턴을 추출하는 방법을 고안하였고, 몇 가지 바이러스를 이용하여 실험해 보았다. 그 결과 실제 학습에 이용한 바이러스가 아니더라도 유사한 동작을 하는 바이러스에 대해서는 면역성을 가질 수 있었다.

  • PDF

Iris Recognition Using Ridgelets

  • Birgale, Lenina;Kokare, Manesh
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.445-458
    • /
    • 2012
  • Image feature extraction is one of the basic works for biometric analysis. This paper presents the novel concept of application of ridgelets for iris recognition systems. Ridgelet transforms are the combination of Radon transforms and Wavelet transforms. They are suitable for extracting the abundantly present textural data that is in an iris. The technique proposed here uses the ridgelets to form an iris signature and to represent the iris. This paper contributes towards creating an improved iris recognition system. There is a reduction in the feature vector size, which is 1X4 in size. The False Acceptance Rate (FAR) and False Rejection Rate (FRR) were also reduced and the accuracy increased. The proposed method also avoids the iris normalization process that is traditionally used in iris recognition systems. Experimental results indicate that the proposed method achieves an accuracy of 99.82%, 0.1309% FAR, and 0.0434% FRR.