• 제목/요약/키워드: signaling chemical

검색결과 237건 처리시간 0.035초

Mychonastes sp. 246 Suppresses Human Pancreatic Cancer Cell Growth via IGFBP3-PI3K-mTOR Signaling

  • Hyun-Jin Jang;Soon Lee;Eunmi Hong;Kyung June Yim;Yong-Soo Choi;Ji Young Jung;Z-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.449-462
    • /
    • 2023
  • Previously, we confirmed that Mychonastes sp. 246 methanolic extract (ME) markedly reduced the viability of BxPC-3 human pancreatic cancer cells. However, the underlying mechanism ME remained unclear. Hence, we attempted to elucidate the anticancer effect of ME on BxPC-3 human pancreatic cancer cells. First, we investigated the components of ME and their cytotoxicity in normal cells. Then, we confirmed the G1 phase arrest mediated growth inhibitory effect of ME using a cell counting assay and cell cycle analysis. Moreover, we found that the migration-inhibitory effect of ME using a Transwell migration assay. Through RNA sequencing, Gene Ontology-based network analysis, and western blotting, we explored the intracellular mechanisms of ME in BxPC-3 cells. ME modulated the intracellular energy metabolism-related pathway by altering the mRNA levels of IGFBP3 and PPARGC1A in BxPC-3 cells and reduced PI3K and mTOR phosphorylation by upregulating IGFBP3 and 4E-BP1 expression. Finally, we verified that ME reduced the growth of three-dimensional (3D) pancreatic cancer spheroids. Our study demonstrates that ME suppresses pancreatic cancer proliferation through the IGFBP3-PI3K-mTOR signaling pathway. This is the first study on the anticancer effect of the ME against pancreatic cancer, suggesting therapeutic possibilities and the underlying mechanism of ME action.

Effects of Dietary Fat Types on Growth Performance, Pork Quality, and Gene Expression in Growing-finishing Pigs

  • Park, J.C.;Kim, S.C.;Lee, S.D.;Jang, H.C.;Kim, N.K.;Lee, S.H.;Jung, H.J.;Kim, I.C.;Seong, H.H.;Choi, Bong-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권12호
    • /
    • pp.1759-1767
    • /
    • 2012
  • This study was performed to determine the effects of dietary fat sources, i.e., beef tallow, soybean oil, olive oil and coconut oil (each 3% in feed), on the growth performance, meat quality and gene expression in growing-finishing pigs. A total of 72 crossbred pigs (Landrace${\times}$Large White${\times}$Duroc) were used at $71{\pm}1$ kg body weight (about 130 d of age) in 24 pens ($320{\times}150$ cm) in a confined pig house (three pigs per pen) with six replicate pens per treatment. The growing diet was given for periods of $14{\pm}3$ d and the finishing diet was given for periods of $28{\pm}3$ d. The fat type had no significant effect either on growth performance or on chemical composition or on meat quality in growing-finishing pigs. Dietary fat type affected fatty acid composition, with higher levels of unsaturated fatty acids (UFAs) and monounsaturated fatty acids (MUFAs) in the olive oil group. Microarray analysis in the Longissimus dorsi identified 6 genes, related to insulin signaling pathway, that were differentially expressed among the different feed groups. Real time-PCR was conducted on the six genes in the longissimus dorsi muscle (LM). In particular, the genes encoding the protein kinase, cAMP-dependent, regulatory, type II, alpha (PRKAR2A) and the catalytic subunit of protein phosphatase 1, beta isoform (PPP1CB) showed the highest expression level in the olive oil group (respectively, p<0.05, p<0.001). The results of this study indicate that the type of dietary fat affects fatty acid composition and insulin signaling-related gene expression in the LM of pigs.

Protein Tyrosine Kinases, $p56^{lck}\;and\;p59^{fyn}$, MAP Kinase JNK1 Provide an Early Signal Required for Upregulation of Fas Ligand Expression in Aburatubolactam C-Induced Apoptosis of Human Jurkat T Cells

  • BAE MYUNG AE;JUN DO YOUN;KIM KYUNG MIN;KIM SANG KOOK;CHUN JANG SOO;TAUB DENNIS;PARK WAN;MOON BYUNG-JO;KIM YOUNG HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.756-766
    • /
    • 2005
  • The signaling mechanism underlying aburatubolactam C-induced FasL upregulation was investigated in human Jurkat T cells. After treatment with aburatubolactam C, the src-family PTKs $p56^{lck}\;and\;p59^{fyn}$, and MAP kinases ERK2 and JNK1, were activated prior to FasL upregulation; Both $p56^{lck}\;and\;p59^{fyn}$ were directly activated 2.4- and 2.2-fold, respectively, in vitro by aburatubolactam C. The aburatubolactam C-induced cellular changes, including the activation of ERK2 and INK1, and FasL upregulation, were completely prevented by the PTK inhibitor genistein. The activation of protein kinase C (PKC$\delta,\;\epsilon\;and\;\mu$ was also induced following aburatubolactam C treatment. Although the activation of $p56^{lck}$ and tyrosine phosphorylation of the cellular proteins were not blocked by the PKC inhibitor GFl09203X, the activation of ERK2 was completely abrogated, along with a detectably enhanced JNK1 activation; FasL upregulation, and apoptosis. However, the FasL upregulation and apoptosis were significantly inhibited by the PKC activator PMA, with a remarkable increase in the ERK2 activation. The cytotoxic effect of aburatubolactam C was reduced in the presence of the anti-Fas neutralizing antibody ZB-4. Although ectopic expression of Bcl-2 failed to completely block the cytotoxicity of aburatubolactam C, it was clearly suppressed. The c-Fos mRNA expression was upregulated in a biphasic manner, where the second phasic expression overlapped with the FasL upregulation. Accordingly, these results demonstrate that aburatubolactam C-induced apoptosis is exerted, at least in part, by FasL upregulation dictated by activation of the PTK ($p56^{lck}\;and\;p59^{fyn}$) /JNKI pathway, which is negatively affected by the concurrent activation of the PKC/ERK2 pathway proximal to PTK activation.

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

Effect of Bisphenol A on Insulin-Mediated Glucose Metabolism In Vivo and In Vitro

  • Ko, Jeong-Hyeon;Kang, Ju-Hee;Park, Chang-Shin;Shin, Dong-Wun;Kim, Ji-Hye;Kim, Hoon;Han, Seung-Baik
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.348-354
    • /
    • 2008
  • Bisphenol A (BPA), an environmental endocrine disrupter, enters the human body continuously in food and drink. Young children are likely to be more vulnerable than adults to chemical exposure due to the immaturities of their organ systems, rapid physical development, and higher ventilation, metabolic rates, and activity levels. The direct effect of BPA on peripheral tissue might also be of importance to the development of insulin resistance. However, the influence that BPA has on insulin signaling molecules in skeletal muscle has not been previously investigated. In this study, we examined the effect of BPA on fasting blood glucose (FBG) in post-weaned Wistar rats and on insulin signaling proteins in C2C12 skeletal muscle cells. Subsequently, we investigated the effects of BPA on insulin-mediated Akt phosphorylation in C2C12 myotubes. In rats, BPA treatment (0.1-1,000 ng/mL for 24 hours) resulted in the increase of FBG and plasma insulin levels, and reduced insulin-mediated Akt phosphorylation. Furthermore, the mRNA expression of insulin receptor (IR) was decreased after 24 hours of BPA treatment in C2C12 cells in a dose-dependent manner, whereas the mRNA levels of other insulin signaling proteins, including insulin receptor substrate-1 (IRS-1) and 5'-AMP-dependent protein kinase (AMPK), were unaffected. Treatment with BPA increased GLUT4 expression and protein tyrosine phosphatase 1B (PTP1B) activity in C2C12 myotubes, but not in protein levels. We conclude that exposure to BPA can induce insulin resistance by decreasing IR gene expression, which is followed by a decrease in insulin- mediated Akt activation and increased PTP1B activity.

Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway

  • Ngan, Nguyen Thi Thuy;Kim, Seong-Jun;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1665-1674
    • /
    • 2019
  • Zika virus (ZIKV) is a mosquito-transmitted, emerging Flavivirus that causes Guillain-$Barr{\acute{e}}$ syndrome and microcephaly in adults and fetuses, respectively. Since ZIKV was first isolated in 1947, severe outbreaks have occurred at various places worldwide, including Yap Island in 2007, French Polynesia in 2013, and Brazil in 2015. Although incidences of ZIKV infection and dissemination have drastically increased, the mechanisms underlying the pathogenesis of ZIKV have not been sufficiently studied. In addition, despite extensive research, the exact roles of individual ZIKV genes in the viral evasion of the host innate immune responses remain elusive. Besides, it is still possible that more than one ZIKV-encoded protein may negatively affect type I interferon (IFN) induction. Hence, in this study, we aimed to determine the modulations of the IFN promoter activity, induced by the MDA5/RIG-I signaling pathway, by over-expressing individual ZIKV genes. Our results show that two nonstructural proteins, NS2A and NS4A, significantly down-regulated the promoter activity of IFN-${\beta}$ by inhibiting multiple signaling molecules involved in the activation of IFN-${\beta}$. Interestingly, while NS2A suppressed both full-length and constitutively active RIG-I, NS4A had inhibitory activity only on full-length RIG-I. In addition, while NS2A inhibited all forms of IRF3 (full-length, regulatory domain-deficient, and constitutively active), NS4A could not inhibit constitutively active IRF3-5D. Taken together, our results showed that NS2A and NS4A play major roles as antagonists of MDA5/RIG-I-mediated IFN-${\beta}$ induction and more importantly, these two viral proteins seem to inhibit induction of the type I IFN responses in differential mechanisms. We believe this study expands our understanding regarding the mechanisms via which ZIKV controls the innate immune responses in cells and may pave the way to development of ZIKV-specific therapeutics.

Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets

  • Jinbao Li;Jianmin Zhang;Xinlin Jin;Shiyin Li;Yingbin Du;Yongqing Zeng;Jin Wang;Wei Chen
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.193-202
    • /
    • 2024
  • Objective: Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. Methods: The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR) to examine the mechanism of oxidative damage. Results: A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. Conclusion: Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.

Combined Role of Two Tryptophane Residues of α-Factor Pheromone

  • Hong, Eun Young;Hong, Nam Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.600-608
    • /
    • 2013
  • Amide analogs of tridecapeptide ${\alpha}$-factor (WHWLQLKPGQPMYCONH$_2$) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide $[Ala_3]{\alpha}$-factor amide (2) and $[Aib_3]{\alpha}$-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one $[Ala^1]{\alpha}$-factor amide (1) and $[Aib^1]{\alpha}$-factor amide (4), reflecting that $Trp^3$ may plays more important role than $Trp^1$ for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of ${\alpha}$-factor ligand to activation of Ste2p through interaction with residue $Tyr^{266}$ and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, $[Ala^{1,3}]{\alpha}$-factor amide (3), $[Aib^{1,3}]{\alpha}$-factor amide (6), [D-$Trp^3]{\alpha}$-factor amide (8) and [des-$Trp^1,Phe^3]{\alpha}$-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways

  • Ye, Lin;Xin, Yang;Wu, Zhi-yuan;Sun, Hai-jian;Huang, De-jian;Sun, Zhi-qin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.15-26
    • /
    • 2022
  • Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.