DOI QR코드

DOI QR Code

Mychonastes sp. 246 Suppresses Human Pancreatic Cancer Cell Growth via IGFBP3-PI3K-mTOR Signaling

  • Hyun-Jin Jang (Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • Soon Lee (Division of Analytical Science, Korea Basic Science Institute) ;
  • Eunmi Hong (Division of Analytical Science, Korea Basic Science Institute) ;
  • Kyung June Yim (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Yong-Soo Choi (Department of Biotechnology, CHA University) ;
  • Ji Young Jung (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Z-Hun Kim (Microbial Research Department, Nakdonggang National Institute of Biological Resources)
  • Received : 2022.11.07
  • Accepted : 2022.11.28
  • Published : 2023.04.28

Abstract

Previously, we confirmed that Mychonastes sp. 246 methanolic extract (ME) markedly reduced the viability of BxPC-3 human pancreatic cancer cells. However, the underlying mechanism ME remained unclear. Hence, we attempted to elucidate the anticancer effect of ME on BxPC-3 human pancreatic cancer cells. First, we investigated the components of ME and their cytotoxicity in normal cells. Then, we confirmed the G1 phase arrest mediated growth inhibitory effect of ME using a cell counting assay and cell cycle analysis. Moreover, we found that the migration-inhibitory effect of ME using a Transwell migration assay. Through RNA sequencing, Gene Ontology-based network analysis, and western blotting, we explored the intracellular mechanisms of ME in BxPC-3 cells. ME modulated the intracellular energy metabolism-related pathway by altering the mRNA levels of IGFBP3 and PPARGC1A in BxPC-3 cells and reduced PI3K and mTOR phosphorylation by upregulating IGFBP3 and 4E-BP1 expression. Finally, we verified that ME reduced the growth of three-dimensional (3D) pancreatic cancer spheroids. Our study demonstrates that ME suppresses pancreatic cancer proliferation through the IGFBP3-PI3K-mTOR signaling pathway. This is the first study on the anticancer effect of the ME against pancreatic cancer, suggesting therapeutic possibilities and the underlying mechanism of ME action.

Keywords

Acknowledgement

This study was supported by a grant (Project No. NNIBR202303101) from Nakdonggang National Institute of Biological Resources funded by the Ministry of Environment of the Korean government.

References

  1. Hu JX, Zhao CF, Chen WB, Liu QC, Li QW, Lin YY, et al. 2021. Pancreatic cancer: a review of epidemiology, trend, and risk factors. World J. Gastroenterol. 27: 4298-4321.  https://doi.org/10.3748/wjg.v27.i27.4298
  2. Quante AS, Ming C, Rottmann M, Engel J, Boeck S, Heinemann V, et al. 2016. Projections of cancer incidence and cancer-related deaths in Germany by 2020 and 2030. Cancer Med. 5: 2649-2656.  https://doi.org/10.1002/cam4.767
  3. Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. 2021. The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy. Front. Oncol. 11: 688377. 
  4. Lee S, Hong E, Jo E, Kim ZH, Yim KJ, Woo SH, et al. 2022. Gossypol induces apoptosis of human pancreatic cancer cells via CHOP/endoplasmic reticulum stress signaling pathway. J. Microbiol. Biotechnol. 32: 645-656.  https://doi.org/10.4014/jmb.2110.10019
  5. Springfeld C, Jager D, Buchler MW, Strobel O, Hackert T, Palmer DH, et al. 2019. Chemotherapy for pancreatic cancer. Presse Med. 48: e159-e174.  https://doi.org/10.1016/j.lpm.2019.02.025
  6. Dyshlovoy SA, Honecker F. 2015. Marine compounds and cancer: where do we stand?. Mar. Drugs 13: 5657-5665.  https://doi.org/10.3390/md13095657
  7. Atanasov AG, Zotchev SB, Dirsch VM. 2021. International natural product sciences, T.; supuran, C.T. natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20: 200-216.  https://doi.org/10.1038/s41573-020-00114-z
  8. Borowitzka MA. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol. 7: 3-15.  https://doi.org/10.1007/BF00003544
  9. Becker EW. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25: 207-210.  https://doi.org/10.1016/j.biotechadv.2006.11.002
  10. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, et al. 2016. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci. 3: 68. 
  11. Jang HJ, Yim KJ, Jo BY, Nam SW, Nam YH, Hwang BS, et al. 2021. Antioxidant and anticancer activites of methanolic extracts from indigenous freshwater green microalgae. KSBB J. 36: 154-164.  https://doi.org/10.7841/ksbbj.2021.36.2.154
  12. Witsch E, Sela M, Yarden Y. 2010. Roles for growth factors in cancer progression. Physiology (Bethesda) 25: 85-101.  https://doi.org/10.1152/physiol.00045.2009
  13. Elghazi L, Blandino-Rosano M, Alejandro E, Cras-Meneur C, Bernal-Mizrachi E. 2017. Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Mol. Metab. 6: 560-573.  https://doi.org/10.1016/j.molmet.2017.03.010
  14. Waters AM, Der CJ. 2018. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 8: a031435. 
  15. Iriana S, Ahmed S, Gong J, Annamalai, AA, Tuli R, Hendifar AE. 2016. Targeting mTOR in pancreatic ductal adenocarcinoma. Front. Oncol. 6: 99. 
  16. Schneeweis C, Hassan Z, Ascherl K, Wirth M, Koutsouli S, Orben F, et al. 2022. Indirect targeting of MYC sensitizes pancreatic cancer cells to mechanistic target of rapamycin (mTOR) inhibition. Cancer Commun. (Lond) 42: 360-364.  https://doi.org/10.1002/cac2.12280
  17. Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. 2022. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit. Rev. Oncol. Hematol. 176: 103749. 
  18. Porta C, Paglino C, Mosca A. 2014. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 4: 64. 
  19. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. 2004. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24: 200-216.  https://doi.org/10.1128/MCB.24.1.200-216.2004
  20. Roncolato F, Lindemann K, Willson ML, Martyn J, Mileshkin L. 2019. PI3K/AKT/mTOR inhibitors for advanced or recurrent endometrial cancer. Cochrane Database Syst. Rev. 10: CD012160. 
  21. Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell. 141: 1117-1134.  https://doi.org/10.1016/j.cell.2010.06.011
  22. Zhao L, Vogt PK. 2008. Class I PI3K in oncogenic cellular transformation. Oncogene. 27: 5486-5496.  https://doi.org/10.1038/onc.2008.244
  23. Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111.  https://doi.org/10.1093/bioinformatics/btp120
  24. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. 2011. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12: R22. 
  25. Kielkopf CL, Bauer W, Urbatsch IL. 2020. Bradford assay for determining protein concentration. Cold Spring Harb. Protoc. 2020: 102269. 
  26. Lopez-Garcia J, Lehocky M, Humpolicek P, Saha P. 2004. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 5: 43-57.  https://doi.org/10.3390/jfb5020043
  27. Ayres Pereira M, Chio IIC. 2019. Metastasis in pancreatic ductal adenocarcinoma: current standing and methodologies. Genes (Basel) 11: 6. 
  28. Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, et al. 2020. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol. Cancer 19: 50. 
  29. Zhang L, Sanagapalli S, Stoita A. 2018. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 24: 2047-2060.  https://doi.org/10.3748/wjg.v24.i19.2047
  30. Lee J, Kwon J, Kim D, Park M, Kim K, Bae I, et al. 2021. Gene expression profiles associated with radio-responsiveness in locally advanced rectal cancer. Biology (Basel) 10: 500. 
  31. Faubert B, Solmonson A, DeBerardinis RJ. 2020. Metabolic reprogramming and cancer progression. Science 368(6487): eaaw5473. 
  32. Tarrado-Castellarnau M, de Atauri P, Cascante M. 2016. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget 7: 62726-62753.  https://doi.org/10.18632/oncotarget.10911
  33. Mayers JR, Vander Heiden MG. 2017. Nature and nurture: what determines tumor metabolic phenotypes?. Cancer Res. 77: 3131-3134.  https://doi.org/10.1158/0008-5472.CAN-17-0165
  34. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 7: 546. 
  35. Yuan C, Liu J, Fan Y, Ren X, Hu G, Li F. 2011. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 4: 47. 
  36. Cha SH, Kim MJ, Yang HY, Jin CB, Jeon YJ, Oda T, et al. 2010. ACE, α-glucosidase and cancer cell growth inhibitory activities of extracts and fractions from marine microalgae, Nannochloropsis oculata. Korean J. Fish. Aquat. Sci. 43: 437-444.  https://doi.org/10.5657/kfas.2010.43.5.437
  37. Shahzad N, Khan W, Md S, Ali A, Saluja SS, Sharma S, et al. 2017. Phytosterols as a natural anticancer agent: current status and future perspective. Biomed. Pharmacother. 88: 786-794.  https://doi.org/10.1016/j.biopha.2017.01.068
  38. Xu H, Li Y, Han B, Li Z, Wang B, Jiang P, et al. 2018. Anti-breast-cancer activity exerted by beta-sitosterol-d-glucoside from sweet potato via upregulation of MicroRNA-10a and via the PI3K-Akt signaling pathway. J. Agric. Food Chem. 66: 9704-9718.  https://doi.org/10.1021/acs.jafc.8b03305
  39. Sarkar S, Pal A, Chouni A, Paul S. 2020. A novel compound β-sitosterol-3-O-β-D-glucoside isolated from Azadirachta indica effectively induces apoptosis in leukemic cells by targeting G0/G1 populations. Indian J. Biochem. Biophys. 57: 27-32. 
  40. Fratter A, Frare C, Uras G, Bonini M, Casari Bariani E, Ragazzo B, et al. 2014. New chitosan salt in gastro-resistant oral formulation could interfere with enteric bile salts emulsification of diet fats: preliminary laboratory observations and physiologic rationale. J. Med. Food 17: 723-729.  https://doi.org/10.1089/jmf.2013.0131
  41. Abd El-Hack ME, Abdelnour S, Alagawany M, Abdo M, Sakr MA, Khafaga AF, et al. 2019. Microalgae in modern cancer therapy: current knowledge. Biomed. Pharmacother. 111: 42-50.  https://doi.org/10.1016/j.biopha.2018.12.069
  42. Saadaoui I, Rasheed R, Abdulrahman N, Bounnit T, Cherif M, Al Jabri H, et al. 2020. Algae-derived bioactive compounds with anti-lung cancer potential. Mar. Drugs 18: 197. 
  43. Chu TLH, Connell M, Zhou L, He Z, Won J, Chen H, et al. 2018. Cell cycle-dependent tumor engraftment and migration are enabled by aurora-A. Mol. Cancer Res. 16: 16-31.  https://doi.org/10.1158/1541-7786.MCR-17-0417
  44. Fan Z, Li C, Qin C, Xie L, Wang X, Gao Z, et al. 2014. Role of the PI3K/AKT pathway in modulating cytoskeleton rearrangements and phenotype switching in rat pulmonary arterial vascular smooth muscle cells. DNA Cell Biol. 33: 12-19.  https://doi.org/10.1089/dna.2013.2022
  45. Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. 2022. PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression. Cancers (Basel) 14: 1652. 
  46. Thomas D, Radhakrishnan P. 2020. Role of tumor and stroma-derived IGF/IGFBPs in pancreatic cancer. Cancers (Basel) 12: 1228. 
  47. Jin L, Shen F, Weinfeld M, Sergi C. 2020. Insulin growth factor binding protein 7 (IGFBP7)-related cancer and IGFBP3 and IGFBP7 crosstalk. Front. Oncol. 10: 727. 
  48. Kerr A, Baxter RC. 2020. Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 41: 385-3393.  https://doi.org/10.1038/s41388-022-02353-3
  49. Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P. 2013. The paradox of Akt-mTOR interactions. Front. Oncol. 3: 165. 
  50. Li W, Saud SM, Young MR, Chen G, Hua B. 2015. Targeting AMPK for cancer prevention and treatment. Oncotarget 6: 7365-7378.  https://doi.org/10.18632/oncotarget.3629
  51. Inoki K, Zhu T, Guan KL. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590.  https://doi.org/10.1016/S0092-8674(03)00929-2
  52. Sook SH, Lee HJ, Kim JH, Sohn EJ, Jung JH, Kim B, et al. 2014. Reactive oxygen species-mediated activation of AMP-activated protein kinase and c-Jun N-terminal kinase plays a critical role in beta-sitosterol-induced apoptosis in multiple myeloma U266 cells. Phytother. Res. 28: 387-394.  https://doi.org/10.1002/ptr.4999
  53. Baskar AA, Al Numair KS, Gabriel Paulraj M, Alsaif MA, Muamar MA, Ignacimuthu S. 2012. -sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. J. Med. Food 15: 335-343. 
  54. Cuyas E, Corominas-Faja B, Joven J, Menendez JA. 2014. Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway. Methods Mol. Biol. 1170: 113-144.  https://doi.org/10.1007/978-1-4939-0888-2_7
  55. Pena-Leon V. Perez-Lois R. Seoane LM. 2020. mTOR Pathway is involved in energy homeostasis regulation as a part of the gut-brain axis. Int. J. Mol. Sci. 21: 5715. 
  56. Rojo F, Najera L, Lirola J, Jimenez J, Guzman M, Sabadell MD, et al. 2007. 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin. Cancer Res. 13: 81-89.  https://doi.org/10.1158/1078-0432.CCR-06-1560
  57. Khan MI, Shin JH, Kim JD. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17: 36. 
  58. Wan X, Li T, Liu D, Chen Y, Liu Y, Liu B, et al. 2018. Effect of marine microalga Chlorella pyrenoidosa ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Mar. Drugs 16: 498. 
  59. Arab S, Ghasemi S, Ghanbari A, Bahraminasab M, Satari A, Mousavi M, et al. 2021. Chemopreventive effect of spirulina microalgae on an animal model of glioblastoma via down-regulation of PI3K/AKT/mTOR and up-regulation of miR-34a/miR-125B expression. Phytother. Res. 35: 6452-6461.  https://doi.org/10.1002/ptr.7298
  60. Silva M, G MdS, Silva A, Lima LRA, Bezerra RP, Marques DAV. 2021. Bioactive compounds of Arthrospira spp. (Spirulina) with potential anticancer activities: a systematic review. ACS Chem. Biol. 16: 2057-2067.  https://doi.org/10.1021/acschembio.1c00568
  61. Liao G, Gao B, Gao Y, Yang X, Cheng X, Ou Y. 2016. Phycocyanin Inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Sci. Rep. 6: 34564. 
  62. Langhans SA. 2018. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol. 9: 6. 
  63. Jensen C, Teng Y. 2020. Is it time to start transitioning from 2D to 3D cell culture?. Front. Mol. Biosci. 7: 33. 
  64. Schmidt M, Scholz CJ, Polednik C, Roller J. 2016. Spheroid-based 3-dimensional culture models: gene expression and functionality in head and neck cancer. Oncol. Rep. 35: 2431-2440.  https://doi.org/10.3892/or.2016.4581
  65. Na TY, Schecterson L, Mendonsa AM, Gumbiner BM. 2020. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc. Natl. Acad. Sci. USA 117: 5931-5937.  https://doi.org/10.1073/pnas.1918167117
  66. Cheok CF. 2012. Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle 11: 2227-2228.  https://doi.org/10.4161/cc.20961
  67. Schirrmacher V. 2019. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 54: 407-419. https://doi.org/10.3892/ijo.2018.4661