DOI QR코드

DOI QR Code

Combined Role of Two Tryptophane Residues of α-Factor Pheromone

  • Hong, Eun Young (School of Chemical and Biological Engineering, Seoul National University) ;
  • Hong, Nam Joo (School of Biotechnology, Yeungnam University)
  • Received : 2012.11.05
  • Accepted : 2012.12.06
  • Published : 2013.02.20

Abstract

Amide analogs of tridecapeptide ${\alpha}$-factor (WHWLQLKPGQPMYCONH$_2$) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide $[Ala_3]{\alpha}$-factor amide (2) and $[Aib_3]{\alpha}$-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one $[Ala^1]{\alpha}$-factor amide (1) and $[Aib^1]{\alpha}$-factor amide (4), reflecting that $Trp^3$ may plays more important role than $Trp^1$ for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of ${\alpha}$-factor ligand to activation of Ste2p through interaction with residue $Tyr^{266}$ and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, $[Ala^{1,3}]{\alpha}$-factor amide (3), $[Aib^{1,3}]{\alpha}$-factor amide (6), [D-$Trp^3]{\alpha}$-factor amide (8) and [des-$Trp^1,Phe^3]{\alpha}$-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

Keywords

References

  1. Dohlamn, H. G. Annu. Rev. Physiol. 2002, 64, 129. https://doi.org/10.1146/annurev.physiol.64.081701.133448
  2. Schoneberg, T.; Schulz, A.; Biebermann, H.; Hermsdorf, T.; Rompler, H.; Sangkuhl, K. Pharmaco,. Ther. 2004, 104, 173. https://doi.org/10.1016/j.pharmthera.2004.08.008
  3. Klabunde, T.; Hessler, G. Chembiochem. 2002, 3, 928. https://doi.org/10.1002/1439-7633(20021004)3:10<928::AID-CBIC928>3.0.CO;2-5
  4. Naider, F.; Becker, J. M. Peptides 2004, 25, 1441 https://doi.org/10.1016/j.peptides.2003.11.028
  5. Stotzler, D.; Duntze, W. Eur. J. Biochem. 1976, 65, 257. https://doi.org/10.1111/j.1432-1033.1976.tb10412.x
  6. Masui, Y.; Chino, N.; Sakakibara, S.; Tanaka,T.; Murakami, T.; Kita, H. Biochem. Biophys. Res. Commun. 1977, 78, 534. https://doi.org/10.1016/0006-291X(77)90211-X
  7. Hong, N. J.; Park, Y. A. Peptide Science Present and Future, Proceedings of the First International Peptide Symposium; Shimonishi, Y., Ed.; Kluwer Academic Publishers: Tokyo, Japan, 1999; p 467.
  8. Raths, S. K.; Naider, F.; Becker, J. M. J. Biol. Chem. 1988, 263, 17333.
  9. Ciejek, E.; Thorner, J.; Geler, M. Biochem. Biophys. Res. Commun. 1977, 78, 952. https://doi.org/10.1016/0006-291X(77)90514-9
  10. Abel, M. G.; Zhang, Y. L.; Lu, H. F.; Naider, F.; Becker, J. M. J. Pept. Res. 1998, 52, 95.
  11. Ciejek, E.; Thorner, J. Cell 1979, 18, 623. https://doi.org/10.1016/0092-8674(79)90117-X
  12. Chan, R. K.; Otte, C. A. Mol. Cell Biol. 1982, 2, 11.
  13. Gounarides, J. S.; Broido, M. S.; Becker, J. M.; Naider, F. Biochemistry 1993, 32, 908. https://doi.org/10.1021/bi00054a023
  14. Jelicks, L. A.; Naider, F.; Shenbagamurthi, P.; Becker, J. M.; Broido, M. S. Biopolymers 1988, 27, 431. https://doi.org/10.1002/bip.360270307
  15. Xue, C. B.; Eriotou-Bargiota, E.; Miller, D.; Becker, J. M.; Naider, F. J. Biol. Chem. 1989, 264, 19161.
  16. Yang, W.; Mckinney, A.; Becker, J. M.; Naider, F. Biochemistry 1995, 34, 1308. https://doi.org/10.1021/bi00004a025
  17. Antohi, O.; Marepalli, H. R.; Yang, W.; Becker, J. M.; Naider, F. Biopolymers 1998, 45, 21. https://doi.org/10.1002/(SICI)1097-0282(199801)45:1<21::AID-BIP3>3.0.CO;2-0
  18. Albericio, F.; Hammer, R. P.; Garcia-Echeverria, C.; Molins, M. A.; Chang, J. L.; Munson, M. C. Int. J. Pept. Prot. Res. 1991, 37, 402.
  19. Xue, C. B.; Mckinney, A.; Lu, H. F.; Jiang, Y.; Becker, J. M.; Naider, F. Int. J. Pept. Prot. Res. 1996, 47, 131.
  20. Zhang, Y. L.; Marepalli, H. R.; Lu, H. F.; Becker, J. M.; Naider, F. Biochemistry 1998, 37, 12465. https://doi.org/10.1021/bi980787u
  21. Hong, N. J.; Jin, D. H.; Hong, E. Y. Bull. Korean Chem. Soc. 2009, 30, 599. https://doi.org/10.5012/bkcs.2009.30.3.599
  22. Bernhart, A.; Drewello, M.; Schutkowski, M. J. Peptide Res. 1997, 50, 143.
  23. Hong, N. J. Bull. Korean Chem. Soc. 2010, 31, 874. https://doi.org/10.5012/bkcs.2010.31.04.874
  24. Kim, D. H.; Hong, N. J. Bull. Korean Chem. Soc. 2012, 33, 261. https://doi.org/10.5012/bkcs.2012.33.1.261
  25. Liu, S.; Henry, K.; Lee, B. K.;Wang, S. H.; Arshava, B.; Becker, J. M.; Naider, F. J. Pept. Res. 2000, 56, 24. https://doi.org/10.1034/j.1399-3011.2000.00730.x
  26. IUPAC-IUB Joint Commission on Biochemical Nomenclature, J. Biol. Chem. 1985, 260, 14.
  27. Siegel, E. G.; Gunther, R.; Schafer, H.; Folsch, U. R.; Schmidt, W. E. Anal. Biochem. 1999, 275, 109. https://doi.org/10.1006/abio.1999.4289
  28. Kim, K. M.; Lee, Y. H.; Naider, F.; Uddin, M. S.; Akal-Strader, A.; Hauser, M.; Becker, J. M. Pharm. Res. 2012, 65, 31. https://doi.org/10.1016/j.phrs.2011.11.002
  29. Goodsell, D. S. Stem Cells 2004, 22, 119. https://doi.org/10.1634/stemcells.22-1-119
  30. Mathew, E.; Bajaj, A.; Connelly, S. M.; Sargsyan, H.; Ding, F. X.; Hajduczok, A. J.; Naider, F.; Dumont, M. E. J. Mol. Biol. 2011, 409, 513. https://doi.org/10.1016/j.jmb.2011.03.059
  31. Wakamatsu, K.; Okada, A.; Miyazawa, T.; Masui, Y.; Sakakibara, S.; Higashijima, T. Eur. J. Biochem. 1987, 163, 331. https://doi.org/10.1111/j.1432-1033.1987.tb10804.x
  32. Higashijima, T.; Masui, Y.; Chino, N.; Sakakibara, S.; Kita, H.; Miyazawa, T. Eur. J. Biochem. 1984, 140, 163. https://doi.org/10.1111/j.1432-1033.1984.tb08081.x
  33. Shenbagamurthi, P.; Baffi, R. A.; Khan, S. A.; Lipke, P.; Pousman, C.; Becker, J. M.; Naider, F. Biochemistry 1983, 22, 1298. https://doi.org/10.1021/bi00274a047
  34. Banerjee, R.; Chattopadhyay, S.; Basu, G. Proteins 2009, 76, 184. https://doi.org/10.1002/prot.22337
  35. Bargiota, E. M.; Xue, C. B.; Naider, F.; Becker, J. M. Biochemistry 1992, 31, 551. https://doi.org/10.1021/bi00117a036
  36. Hruby, V. J. J. Pept. Res. 2005, 66, 309. https://doi.org/10.1111/j.1399-3011.2005.00307.x
  37. Veronese, F. M.; Schiavon, O.; Pasut, G.; Mendichi, R.; Andersson, L.; Tsirk, A.; Ford, J.; Wu, G.; Kneller, S.; Davies, J.; Duncan, R. Bioconjugate Chem. 2005, 16, 775. https://doi.org/10.1021/bc040241m
  38. Banerjee, S.; Aher, N.; Patil, R.; Khandare, J. J. Drug Deliv. 2012, 2012. 1.
  39. Manfredi, J. P.; Klein, C.; Herrero, J. J.; Byrd, D. R.; Trueheart, J.; Wiesler, W. T.; Fowlkes, D. M.; Broach, J. R. Mol. Cell Biol. 1996, 16, 4700.
  40. Umanah, G. K.; Huang, L.Y.; Maccarone, J. M.; Naider, F.; Becker, J. M. Biochemistry 2011, 50, 6841. https://doi.org/10.1021/bi200254h
  41. Kim, K. M.; Lee, Y. H.; Naider, F.; Uddin, M. S.; Akal-Strader, A.; Hauser, M.; Becker, J. M. Pharm. Res. 2012, 65, 31. https://doi.org/10.1016/j.phrs.2011.11.002
  42. Naider, F.; Becker, J. M. CRC Crit. Rev. Biochemistry 1986, 21(3), 225. https://doi.org/10.3109/10409238609113612
  43. Baffi, R. A.; Shenbagamurthi, P.; Terrance, K.; Becker, J. M.; Naider, F.; Lipke, P. N. J. Bacteriol. 1984, 158, 1152.
  44. Umanah, G. K.; Son, C.; Ding, F. X.; Naider, F.; Becker, J. M. Biochemistry 2009, 48, 2033. https://doi.org/10.1021/bi802061z
  45. Henry, L. K.; Khare, S.; Son, C.; Babu, V. V.; Naider, F.; Becker, J. M. Biochemistry 2002, 41, 6128. https://doi.org/10.1021/bi015863z
  46. Dube, P.; DeCostanzo, A.; Konopka, J. B. J. Biol. Chem. 2000, 275, 26492. https://doi.org/10.1074/jbc.M002767200
  47. Ding, F. X.; Lee, B. K.; Hauser, M.; Davenport, L.; Becker, J. M.; Naider, F. Biochemistry 2001, 40, 1102. https://doi.org/10.1021/bi0021535
  48. Ding, F. X.; Lee, B. K.; Hauser, M.; Patri, R.; Arshava, B.; Becker, J. M. J. Pept. Res. 2002, 60, 65.
  49. Son, C. D.; Sargsyan, H.; Naider, F.; Becker, J. M. Biochemistry 2004, 43, 13193. https://doi.org/10.1021/bi0496889
  50. Son, C. D.; Sargsyan, H.; Hurst, G. B.; Naider, F.; Becker, J. M. J. Pept. 2005, 65, 418. https://doi.org/10.1111/j.1399-3011.2005.00248.x
  51. Kim, D. H.; Hong, N. J. Ann. Meet. Kor. Soc. Biochem. Mol. Biol. 2012; p 149.
  52. Lin, J. C.; Parrish, W.; Eilers, M.; Smith, S. O.; Konopka, J. B. Biochemistry 2003, 42, 293. https://doi.org/10.1021/bi026766o
  53. Naider, F.; Becker, J. M.; Lee, Y. H.; Horovitz, A. Biochemistry 2007, 46, 3476. https://doi.org/10.1021/bi602415u
  54. Lee, B. K.; Lee, Y. H.; Hauser, M.; Son, C. D.; Khare, S.; Naider, F.; Becker, J. M. Biochemistry 2002, 41, 13681. https://doi.org/10.1021/bi026100u
  55. Yau, W. M.; Wimley, W. C.; Gawrisch, K.; White, S. H. Biochemistry 1998, 37, 14713. https://doi.org/10.1021/bi980809c
  56. Tantry, S.; Ding, F. X.; Dumont, M.; Becker, J. M.; Naider, F. Biochemistry 2010, 49, 5007. https://doi.org/10.1021/bi100280f

Cited by

  1. Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1365
  2. vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10367