• Title/Summary/Keyword: signal vector magnitude

Search Result 85, Processing Time 0.022 seconds

A Fully Integrated Dual-Band WLP CMOS Power Amplifier for 802.11n WLAN Applications

  • Baek, Seungjun;Ahn, Hyunjin;Ryu, Hyunsik;Nam, Ilku;An, Deokgi;Choi, Doo-Hyouk;Byun, Mun-Sub;Jeong, Minsu;Kim, Bo-Eun;Lee, Ockgoo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 2017
  • A fully integrated dual-band CMOS power amplifier (PA) is developed for 802.11n WLAN applications using wafer-level package (WLP) technology. This paper presents a detailed design for the optimal impedance of dual-band PA (2 GHz/5 GHz PA) output transformers with low loss, which is provided by using 2:2 and 2:1 output transformers for the 2 GHz PA and the 5 GHz PA, respectively. In addition, several design issues in the dual-band PA design using WLP technology are addressed, and a design method is proposed. All considerations for the design of dual-band WLP PA are fully reflected in the design procedure. The 2 GHz WLP CMOS PA produces a saturated power of 26.3 dBm with a peak power-added efficiency (PAE) of 32.9%. The 5 GHz WLP CMOS PA produces a saturated power of 24.7 dBm with a PAE of 22.2%. The PA is tested using an 802.11n signal, which satisfies the stringent error vector magnitude (EVM) and mask requirements. It achieved an EVM of -28 dB at an output power of 19.5 dBm with a PAE of 13.1% at 2.45 GHz and an EVM of -28 dB at an output power of 18.1 dBm with a PAE of 8.9% at 5.8 GHz.

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.

Localization Using Extended Kalman Filter based on Chirp Spread Spectrum Ranging (확장 Kalman 필터를 적용한 첩 신호 대역확산 거리 측정 기반의 위치추정시스템)

  • Bae, Byoung-Chul;Nam, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Location-based services with GPS positioning technology as a key technology, but recognizing the current location through satellite communication is not possible in an indoor location-aware technology, low-power short-range communication is primarily made of the study. Especially, as Chirp Spread Spectrum(CSS) based location-aware approach for low-power physical layer IEEE802.15.4a is selected as a standard, Ranging distance estimation techniques and data transfer speed enhancements have been more developed. It is known that the distance measured by CSS ranging has quite a lot of noise as well as its bias. However, the noise problem can be adjusted by modeling the non-zero mean noise value by a scaling factor which corresponds to the change of magnitude of a measured distance vector. In this paper, we propose a localization system using the CSS signal to measure distance for a mobile node taken a measurement of the exact coordinates. By applying the extended kalman filter and least mean squares method, the localization system is faster, more stable. Finally, we evaluate the reliability and accuracy of the proposed algorithm's performance by the experiment for the realization of localization system.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF