An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration

예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석

  • Seo, jung min (Department of Radiation Oncology, Inha university hospital) ;
  • Lee, chang yeol (Department of Radiation Oncology, Inha university hospital) ;
  • Huh, hyun do (Department of Radiation Oncology, Inha university hospital) ;
  • Kim, wan sun (Department of Radiation Oncology, Inha university hospital)
  • 서정민 (인하대학교병원 방사선종양학과) ;
  • 이창열 (인하대학교병원 방사선종양학과) ;
  • 허현도 (인하대학교병원 방사선종양학과) ;
  • 김완선 (인하대학교병원 방사선종양학과)
  • Received : 2015.10.02
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

목 적 : 사이버나이프 종양 추적 시스템(Cyber-knife tumor tracking system)은 환자 외부에 부착한 LED marker에서 얻어진 실시간 호흡 주기 신호와 호흡에 따라 움직이는 종양의 위치와의 상관관계를 바탕으로 종양의 위치를 미리 예측하고 종양의 움직임을 치료기와 동기화 (Synchronize) 시켜 실시간으로 종양을 추적하며 치료하는 시스템이다. 본 연구의 목적은 사이버나이프 종양 추적 방사선 치료 중 기침이나 수면 등으로 인해 예측 불가능한 갑작스러운 호흡 형태 변화에 따른 종양 추적 방사선 치료 시스템의 정확도를 평가하고자 한다. 대상 및 방법 : 연구에 사용된 호흡 Log 파일은 본원에서 호흡 동조 방사선치료(Respiratory gating radiotherapy)나 사이버나이프 호흡 추적 방사선수술(Cyber-knife tracking radiosurgery)을 받았던 환자의 호흡 Log 파일을 바탕으로, 정현곡선 형태(Sinusoidal pattern)와 갑작스런 변화 형태(Sudden change pattern)의 Log 파일을 이용하여 측정이 가능하도록 재구성하였다. 재구성 된 호흡 Log 파일을 사이버나이프 동적 흉부 팬텀에 입력하여 호흡에 따른 움직임을 구현할 수 있도록 기존 동적 흉부 팬텀의 구동장치를 추가 제작하였고, 호흡의 형태를 팬텀에 적용 시킬 수 있는 프로그램을 개발하였다. 팬텀 내부 표적(Ball cube target)의 움직임은 호흡의 크기에 따라 상하(Superior-Inferior)방향으로 5 mm, 10 mm, 20 mm 3가지 크기의 변위로 구동하게 하였다. 팬텀 내부 표적에 EBT3 필름 2장을 교차 삽입하여 표적 움직임의 변화에 따라 사이버나이프 제조사에서 제공된 End-to-End(E2E) test를 호흡의 형태에 따라 각각 5회씩 실시하고 측정하였다. 종양 추적 시스템의 정확도는 삽입된 필름을 분석하여 표적 오차(Targeting error)로 나타내었고, 추가로 E2E test가 진행되는 동안 상관관계 오차(Correlation error)를 측정하여 분석하였다. 결 과 : 표적 오차는 정현곡선 호흡 형태일 경우 표적 움직임의 크기가 5 mm, 10 mm, 20 mm 에 따라 각각 평균 $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, $2.37{\pm}0.17mm$이고, 갑작스런 호흡 변화 형태일 경우 각각 평균 $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, $2.44{\pm}0.26mm$으로 분석되었다. 표적 추적에 있어 변위 벡터의 길이로 정의할 수 있는 상관관계 오차는 정현곡선 호흡 형태일 경우 표적 움직임의 크기가 5 mm, 10 mm, 20 mm 에 따라 각각 평균 $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, $1.63{\pm}0.10mm$이고, 갑작스런 호흡 변화 형태일 경우 각각 평균 $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, $1.98{\pm}0.10mm$으로 분석되었다. 두 호흡 형태에서 모두 상관관계 오차 값이 클수록 표적 오차 값이 크게 나타났다. 정현곡선 호흡 형태의 표적 움직임 크기가 20 mm 이상일 경우, 두 오차 값 모두 사이버나이프 제조사의 권고치인 1.5 mm 이상으로 측정되었다. 결 론 : 표적 움직임의 크기가 클수록 표적 오차 값과 상관관계 오차 값이 증가하는 경향이 있었으며, 정현곡선 호흡 형태보다 갑작스런 호흡 변화 형태에서 오차 값이 크게 나타났다. 호흡의 형태가 규칙적인 정현 곡선 형태더라도 표적의 움직임이 클수록 종양 추적 시스템의 정확도가 감소하는 것으로 판단할 수 있다. 사이버나이프 종양 추적 시스템의 알고리즘을 이용하여 치료 시행 시 환자의 기침 등으로 인하여 갑작스럽게 예측 불가능한 호흡 변화가 있는 경우 치료를 멈추고 내부 표적 확인 과정을 재실시 하여야 하며 호흡 형태를 재조정해야 할 필요가 있다. 치료 중 환자가 본인의 호흡 형태를 관찰 할 수 있는 고글 모니터 등을 착용하여 규칙적인 호흡 형태를 유도하는 것이 치료의 정확도는 향상될 수 있다고 판단된다.

Keywords

References

  1. Lorraine Portelance, M.D.a, K.S.Clifford Chao, M.D.a: Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Radiat Oncol Biol Phys, Volume 51, Issue 1, 1 September 2001, Pages 261-266
  2. Quiwen W, Radhe M: Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med phys 27(4):701-711(2000) https://doi.org/10.1118/1.598932
  3. Rikiya Onimaru, M.D. Hiroki Shirato, M.D., Shinichi Shimizu, M.D : Tolerance of organs at risk in smallvolume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Radiat Oncol Biol Phys, Volume 56, Issue 1, 1 May 2003, Pages 126-135 https://doi.org/10.1016/S0360-3016(03)00095-6
  4. Mageras GS, Pevsner A, YorkeED, et al. Measurement of lung tumor motion using respiration-correlated CT.Int J Radiat Oncol Biol Phys, 2004;60:933-941. https://doi.org/10.1016/j.ijrobp.2004.06.021
  5. American Association of Physicists in Medicine (AAPM). The management of respiratory motion in radiation oncology, AAPM Task Group76, AAPM:2006.
  6. Kubo HD, Hill BC. Respiration gated radiotherapy treatment. A technical study. Phys Med Biol 1996;41:83-91 https://doi.org/10.1088/0031-9155/41/1/007
  7. S. S. Vedam1, P. J. Keall2, V. R. Kini2 and R. Mohan2: Determining parameters for respirationgated radiotherapy, Med. Phys. 28, 2139 (2001) https://doi.org/10.1118/1.1406524
  8. Mischa Hoogeman, Jean-Briac Prevost: Clinical Accuracy of the Respiratory Tumor Tracking System of the CyberKnife. Radiat Oncol Biol Phys, Volume 74, Issue 1, 1 May 2009, Pages 297-303 https://doi.org/10.1016/j.ijrobp.2008.12.041
  9. Hiroki S, Shinnichi S, Tatsuya K: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Phys 48(4):1187-1195 (2000) https://doi.org/10.1016/S0360-3016(00)00748-3
  10. Dempsey JA, Smith CA, Harms CA, Chow C, Saupe KW: Sleep-induced breathing instability. University of Wisconsin-Madison Sleep and respiration Research Group.John Rankin Laboratory of Pulmonary Medicine, Department of Preventive Medicine, University of Wisconsin-Madison 53705, USA.[1996, 19(3):236-247] https://doi.org/10.1093/sleep/19.suppl_10.S236
  11. Jurgen W, Jurgen M, Kurt B, et al: Tumor tracking and motion compensation with and adaptive tumor tracking system(ATTS): system description and prototype testing. Med Phys, 35(9):3911-3921 (2008) https://doi.org/10.1118/1.2964090
  12. Yvette Seppenwoolde1,a), Ross I. Berbeco2, Seiko Nishioka3, Hiroki Shirato4 and Ben Heijmen5: Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study, Med. Phys. 34, 2774 (2007) https://doi.org/10.1118/1.2739811
  13. Eric W. Pepin1, Huanmei Wu2, Yuenian Zhang3 and Bryce Lord4: Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system. Med. Phys. 38, 4036 (2011) https://doi.org/10.1118/1.3596527
  14. Mischa H, Jean BP, Joost N, et al: Clinical accuracy of the respirator tumor tracking system of the Cyber-Knife: assessment by of log files. Int J Radiat Oncol Biol Phys 74(1):297-303 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.041
  15. Donshan F, Gopinath K, Vladimir M, et al: Automated Skull Tracking for the Cyber-Knife image-guided radiosurgery system. Proc. of SPIE 5744:366-377 (2005)
  16. Cynthia C, Arjun S, Letitia L, et al: Effects of residual target motion for image-tracked spine radiosurgery. Med phys 34(11): 4484-4490 (2007) https://doi.org/10.1118/1.2790587
  17. Iris CM, Pimkhuan K, Mi-Ryenong R, et al: Imageguided robotic radiosurgery for spinal metastases. Radiotherapy and Oncology 82:185-190 (2007) https://doi.org/10.1016/j.radonc.2006.11.023
  18. Mikado I, Kochi Y, Hiroki S, et al: Insertion and fixation of fiducial markers for setup and tracking of lung tumor in radiotherapy. Int J Radiat Oncol Biol Phys 63(5):1442-1447 (2005) https://doi.org/10.1016/j.ijrobp.2005.04.024
  19. Sohail Sayeh, James Wang, William T. Main, Warren Kilby, Calvin R. Maurer Jr.: Respiratory Motion Tracking for Robotic Radiosurgery, Robotic Radiosurgery Chapter Treating Tumors that Move with Respiration pp 15-29