• 제목/요약/키워드: signal pathway

검색결과 823건 처리시간 0.024초

고등식물의 질산시그널에 의한 유전자 발현제어 관련 전사인자의 연구현황 (Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants)

  • 정유진;박정순;고지윤;이효주;김진영;이예지;남기홍;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.124-130
    • /
    • 2021
  • 질산염은 많은 유전자의 발현을 조절하고 생장과 발육과정에서 매우 중요한 영양소이자 시그널 분자이다. 본 연구는 고등식물에서 질산 신호에 의한 유전자발현제어 관련 전사인자의 연구현황을 소개하고자 한다. 질산 환원 효소는 질소 동화 경로상의 효소이며, 질산이온을 아질산이온으로 환원하는 과정을 촉매한다. 질산이온, 빛, 대사산물, 식물호르몬, 저온, 가뭄 등의 여러 요인이 질산환원효소 유전자의 발현 수준과 생리적 역할과 같은 질산환원효소 활성을 조절한다. 최근 질산 환원 효소 유전자의 발현제어에 관여하고 있는 몇몇 전사인자들이 식물에서 분리되었다. NODULE-INCEPTION-like proteins (NLPs)는 질산 환원 효소 유전자의 질산 유도성 발현에 관여하는 전사인자이다. NLPs는 질산 수송체, 아질산 수송체, 아질산 환원 효소에 관련된 유전자의 질산 유도성 발현을 제어한다. 질산 환원 경로와 관련된 유전자의 발현 수준은 질산에 반응하여 NLPs에 의해 협조적으로 조절된다. 따라서 식물에서 질산염의 기능을 이해하면 질소 사용량이 적은 작물을 육성할 수 있다.

Protective Role of Transduced Tat-Thioredoxin1 (Trx1) against Oxidative Stress-Induced Neuronal Cell Death via ASK1-MAPK Signal Pathway

  • Yeo, Eun Ji;Eum, Won Sik;Yeo, Hyeon Ji;Choi, Yeon Joo;Sohn, Eun Jeong;Kwon, Hyun Jung;Kim, Dae Won;Kim, Duk-Soo;Cho, Sung-Woo;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Shin, Min Jea;Choi, Soo Young
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.321-330
    • /
    • 2021
  • Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Dexamethasone Facilitates NF-κB Signal Pathway in TNF-α Stimulated Rotator Cuff Tenocytes

  • Ji, Jong-Hun;Kim, Young-Yul;Patel, Kaushal;Cho, Namjoon;Park, Sang-Eun;Ko, Myung-Sup;Park, Suk-Jae;Kim, Jong Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.297-303
    • /
    • 2019
  • Corticosteroids are commonly used for pain control in rotator cuff tear. Deregulated $NF-{\kappa}B$ activation is a hallmark of chronic inflammatory diseases and has been responsible for the pathogenesis of rotator cuff tear. The Dexamethasone(DEXA) is a synthetic corticosteroid. The purpose of this study was to examine the exact effect of dexamethasone on $NF-{\kappa}B$ signaling in rotator cuff tear. We measured $NF-{\kappa}B$ expression in four groups: control, $TNF-{\alpha}$-treated, DEXA-treated, and combined treatment with $TNF-{\alpha}$ and DEXA. Tenocytes were isolated from patients with rotator cuff tears and pre-incubated with $TNF-{\alpha}$ (10 ng/ml), DEXA ($1{\mu}M$), or both of them for 10 min, 1 h, and 2 h. Expression of p65, p50, and p52 in the nuclei and cytosol was analyzed by western blotting and immunofluorescence imaging using confocal microscopy. We also evaluated nucleus/cytosol (N/C) ratios of p65, p50, and p52. In our study, the combined treatment with DEXA and $TNF-{\alpha}$ showed increased N/C ratios of p65, p50, and p52 compared with those in the $TNF-{\alpha}$ group at all time points. Additionally, in the DEXA group, N/C ratios of p65, p50, and p52 gradually increased from 10 min to 2 h. In conclusion, DEXA promoted the nuclear localization of p65, p50, and p52, but was not effective in inhibiting the inflammatory response of $TNF-{\alpha}$-stimulated rotator cuff tear.

Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models

  • Kim, Young-Won;Zhou, Tong;Ko, Eun-A;Kim, Seongtae;Lee, Donghee;Seo, Yelim;Kwon, Nahee;Choi, Taeyeon;Lim, Heejung;Cho, Sungvin;Bae, Gwanhui;Hwang, Yuseong;Kim, Dojin;Park, Hyewon;Lee, Minjae;Jang, Eunkyung;Choi, Jeongyoon;Bae, Hyemi;Lim, Inja;Bang, Hyoweon;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.151-159
    • /
    • 2019
  • Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a, Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.

옥수수수염 추출물이 SW480 Colon Cancer Cell에서 NF-κB와 염증성 사이토카인 발현에 미치는 영향 (The Effect of Saccharin on the Gene Expression of NF-κB and Inflammatory Cytokines in LPS-Stimulated SW480 Colon Cancer Cells)

  • 최현지;김선림;강현중;김명환;김우경
    • 대한영양사협회학술지
    • /
    • 제25권3호
    • /
    • pp.217-228
    • /
    • 2019
  • There have been no published studies concerning the anti-inflammatory effects of corn silk on colon cancer cells. Thus, this study was conducted to investigate the effect of corn silk extract containing high levels of maysin on inflammation and its mechanism of action in colon cancer cells. SW 480 human colon cancer cells were treated with $1{\mu}g/mL$ of lipopolysaccharide (LPS) to induce inflammation, and next they were treated with different concentrations of corn silk extract (0, 5, 10 and $15{\mu}g/mL$). The concentrations of nitric oxide (NO) were determined. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1beta ($IL-1{\beta}$) and interleukin-6 (IL-6), were determined. Western blot analysis was performed to determine the protein expressions of nuclear factor-kappa B ($NF-{\kappa}B$) and mitogen-activated protein kinases, and the latter consists of extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 MAP kinase (p38). The concentration of NO and the mRNA expression of iNOS were significantly and dose-dependently decreased in the corn silk-treated groups (P<0.05). The mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 were significantly increased in the LPS-treated group (P<0.05), but these expressions were significantly and dose-dependently decreased in the corn silk treated groups (P<0.05). The protein expressions of $NF-{\kappa}B$ (in a dose-dependent fashion), ERK (at 10 and $15{\mu}g/mL$), JNK (at $15{\mu}g/mL$) and p38 (at 10 and $15{\mu}g/mL$) were significantly decreased with corn silk treatments (P<0.05). In conclusion, corn silk extract containing high levels of maysin seems to inhibit the LPS-induced inflammatory responses in SW480 colon cancer cells via the $NF-{\kappa}B$ pathway.

단백체학과 생물정보학을 이용한 자궁 내 환경의 이해 (Understanding of Intrauterine Environment Changes based on Proteomics and Bioinformatics during Estrous Cycle)

  • 이상희;이승형
    • 생명과학회지
    • /
    • 제29권5호
    • /
    • pp.621-630
    • /
    • 2019
  • 암컷의 자궁에서 일어나는 수정은 새로운 생명의 시작점이다. 암컷의 번식기관은 난소, 난관, 자궁, 자궁경부 및 질로 구성되어 있으며, 이들기관은 발정주기에 따라 생리학적인 역할이 조절된다. 자궁은 수정란의 발달과 착상이 이루어지는 곳이기 때문에, 수정란과 자궁 환경의 상호작용은 안정적인 임신을 위한 필수적인 조건으로 알려져있다. 자궁내막은 자궁의 한 부분으로써 이들의 형태학적인 특징은 호르몬에 의해 반복적으로 변화되며, 자궁내막으로부터 분비되는 자궁액 역시 그 특징이 변화하게 된다. 최근, 자궁내막 및 자궁액 내 포함된 대량의 단백질을 단백체학과 생물정보학의 발전에 따라 검출할 수 있게 되었으며, 이러한 기술에 의해 번식학 발전을 가속화하고 있다. 대량의 단백질 정보는 성호르몬 신호기전 및 혈관신생과 같은 이론 등을 깊게 연구할 수 있는 도구로써 이용되고 있다. 본 총설에서는 자궁내막의 재구성, 자궁선 및 자궁액에 대한 기초적인 생물학적인 지식을 바탕으로, 단백체학과 생물정보학을 활용한 자궁내막 및 자궁액 연구에 대해서 소개하고자 한다. 또한, 생물정보학 도구를 활용하여 단백체학에서 탐색된 자궁내막 및 자궁액 관련 단백질들의 상호작용 알아보는 방법에 대해서도 소개하였다. 따라서, 본 총설의 내용은 발정주기동안 자궁내막 안에서 일어나는 새로운 세포 신호기전을 탐색하는데 큰 도움이 될것이라 생각된다.

Potentiation of the glycine response by serotonin on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice

  • Nguyen, Hoang Thi Thanh;Cho, Dong Hyu;Jang, Seon Hui;Han, Seong Kyu;Park, Soo Joung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.271-279
    • /
    • 2019
  • The lamina II, also called the substantia gelatinosa (SG), of the trigeminal subnucleus caudalis (Vc), is thought to play an essential role in the control of orofacial nociception. Glycine and serotonin (5-hydroxytryptamine, 5-HT) are the important neurotransmitters that have the individual parts on the modulation of nociceptive transmission. However, the electrophysiological effects of 5-HT on the glycine receptors on SG neurons of the Vc have not been well studied yet. For this reason, we applied the whole-cell patch clamp technique to explore the interaction of intracellular signal transduction between 5-HT and the glycine receptors on SG neurons of the Vc in mice. In nine of 13 neurons tested (69.2%), pretreatment with 5-HT potentiated glycine-induced current ($I_{Gly}$). Firstly, we examined with a $5-HT_1$ receptor agonist (8-OH-DPAT, $5-HT_{1/7}$ agonist, co-applied with SB-269970, $5-HT_7$ antagonist) and antagonist (WAY-100635), but $5-HT_1$ receptor agonist did not increase $I_{Gly}$ and in the presence of $5-HT_1$ antagonist, the potentiation of 5-HT on $I_{Gly}$ still happened. However, an agonist (${\alpha}$-methyl-5-HT) and antagonist (ketanserin) of the $5-HT_2$ receptor mimicked and inhibited the enhancing effect of 5-HT on $I_{Gly}$ in the SG neurons, respectively. We also verified the role of the $5-HT_7$ receptor by using a $5-HT_7$ antagonist (SB-269970) but it also did not block the enhancement of 5-HT on $I_{Gly}$. Our study demonstrated that 5-HT facilitated $I_{Gly}$ in the SG neurons of the Vc through the $5-HT_2$ receptor. The interaction between 5-HT and glycine appears to have a significant role in modulating the transmission of the nociceptive pathway.

진동이 성대세포주의 세포외기질 변화에 대한 연구 (Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation)

  • 김지민;신성찬;권현근;천용일;노정훈;이병주
    • 대한후두음성언어의학회지
    • /
    • 제32권1호
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선 (Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells)

  • 프라모더 바하더 케이씨;강봉석;정남호
    • 생명과학회지
    • /
    • 제31권5호
    • /
    • pp.464-474
    • /
    • 2021
  • 대사성질환, 암, 손상, 및 패혈증 등에 의해 유도되는 염증은 산화스트레스를 통해 세포의 미토콘드리아의 기능을 감퇴시켜 신경증과 근육위축증 등을 야기한다. 본 연구에서는 lipopolysaccharide (LPS)에 의해 유도된 미토콘 드리아의 기능감퇴와 근육위측증에 대한 butyrate의 억제효과를 확인하고자 하였다. LPS의 처리는 C2C12세포에서 MAPK의 활성을 통해 미토콘드리아 분열을 촉진하는 DRP1 (Ser616) 인산화와 Atrogin-1의 발현을 증가시켰다. 그러나 butyrate를 처리한 C2C12세포에서는 LPS 처리에 의한 염증 효과가 유의적으로 감소하며, 미토콘드리아 분열을 억제하는 DRP1 (Ser637)의 인산화와 mitofugin2 (Mfn2)의 발현을 증가를 유도하는 것을 확인하였다. 또한 butyrate를 처리한 세포에서 대사성질환을 유발하는 pyruvate dehydrogenase kinase 4 (PDK4)의 발현을 억제함이 관찰되었다. 이는 butyrate가 포도당 대사에서 염증에 의해 유도되는 Warburg 효과를 억제하여 산화스트레스를 개선함으로써, JNK의 활성을 억제하는 것으로 확인되었다. 이러한 결과들은 butyrate가 항산화효과를 통해 패혈증과 대사성질환과 같은 염증에 의해 유도되는 미토콘드리아의 기능 감퇴와 이에 따른 근육위축증을 개선할 수 있는 후보물질로 활용될 가능성이 있을 것으로 기대된다.