References
- Ang, Y. L., Yong, W. P. and Tan, P. (2016) Translating gastric cancer genomics into targeted therapies. Crit. Rev. Oncol. Hematol. 100, 141-146. https://doi.org/10.1016/j.critrevonc.2016.02.007
- Angeloni, C., Motori, E., Fabbri, D., Malaguti, M., Leoncini, E., Lorenzini, A. and Hrelia, S. (2011) H2O2 preconditioning modulates phase II enzymes through p38 MAPK and PI3K/Akt activation. Am. J. Physiol. Heart Circ. Physiol. 300, H2196-H2205. https://doi.org/10.1152/ajpheart.00934.2010
- Booze, M. L., Hansen, J. M. and Vitiello, P. F. (2016) A novel mouse model for the identification of thioredoxin-1 protein interactions. Free Radic. Biol. Med. 99, 533-543. https://doi.org/10.1016/j.freeradbiomed.2016.09.013
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1006/abio.1976.9999
- Chan, P. H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2-14. https://doi.org/10.1097/00004647-200101000-00002
- Chen, Y. and Swanson, R. A. (2003) Astrocytes and brain injury. J. Cereb. Blood Flow Metab. 23, 137-149. https://doi.org/10.1097/01.WCB.0000044631.80210.3C
- Das, K. C. and Das, C. K. (2000) Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. Biochem. Biophys. Res. Commun. 277, 443-447. https://doi.org/10.1006/bbrc.2000.3689
- Embury, J., Klein, D., Pileggi, A., Ribeiro, M., Jayaraman, S., Molano, R. D., Fraker, C., Kenyon, N., Ricordi, C., Inverardi, L. and Pastori, R. L. (2001) Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. Diabetes 50, 1706-1713. https://doi.org/10.2337/diabetes.50.8.1706
- Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587-2597. https://doi.org/10.1096/fasebj.4.9.2189775
- Fujino, G., Noguchi, T., Matsuzawa, A., Yamauchi, S., Saitoh, M., Takeda, K. and Ichijo, H. (2007) Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol. Cell Biol. 27, 8152-8163. https://doi.org/10.1128/MCB.00227-07
- Ginsberg, M. D., Becker, D. A., Busto, R., Belayev, A., Zhang, Y., Khoutorova, L., Ley, J. J., Zhao, W. and Belayev, L. (2003) Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia. Ann. Neurol. 54, 330-342. https://doi.org/10.1002/ana.10659
- Haendeler, J., Hoffmann, J., Tischler, V., Berk, B. C., Zeiher, A. M. and Dimmeler, S. (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. Cell Biol. 4, 743-749. https://doi.org/10.1038/ncb851
- Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K. and Gotoh, Y. (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90-94. https://doi.org/10.1126/science.275.5296.90
- Ito, D., Tanaka, K., Suzuki, S., Dembo, T. and Fukuuchi, Y. (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32, 1208-1215. https://doi.org/10.1161/01.str.32.5.1208
- Janac, B., Radenovic, L., Selakovic, V. and Prolic, Z. (2006) Time course of motor behavior changes in Mongolian gerbils submitted to different durations of cerebral ischemia. Behav. Brain Res. 175, 362-373. https://doi.org/10.1016/0006-8993(79)91017-5
- Jegal, M. E., Jung, S. Y., Han, Y. S. and Kim, Y. J. (2019) C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells. BMB Rep. 52, 330-335. https://doi.org/10.5483/bmbrep.2019.52.5.312
- Jellinger, K. A. and Stadelmann, C. (2001) Problems of cell death in neurodegeneration and Alzheimer's disease. J. Alzheimers Dis. 3, 31-40. https://doi.org/10.3233/JAD-2001-3106
- Jia, L., Chen, Y., Tian, Y. H. and Zhang, G. (2018) MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo. Exp. Ther. Med. 15, 1640-1646.
- Kaimul Ahsan, M., Nakamura, H., Tanito, M., Yamada, K., Utsumi, H. and Yodoi, J. (2005) Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced down-regulation of Akt. Free Radic. Biol. Med. 39, 1549-1559. https://doi.org/10.1016/j.freeradbiomed.2005.07.016
- Kamimoto, Y., Sugiyama, T., Kihira, T., Zhang, L., Murabayashi, N., Umekawa, T., Nagao, K., Ma, N., Toyoda, N., Yodoi, J. and Sagawa, N. (2010) Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia 53, 2046-2055. https://doi.org/10.1007/s00125-010-1784-y
- Kim, D. H., Kim, H. M., Huong, P. T. T., Han, H. J., Hwang, J., Cha-Molstad, H., Lee, K. H., Ryoo, I. J., Kim, K. E., Huh, Y. H., Ahn, J. S., Kwon, Y. T., Soung, N. K. and Kim, B. Y. (2019) Enhanced anticancer effects of a methylation inhibitor by inhibiting a novel DNMT1 target, CEP 131, in cervical cancer. BMB Rep. 52, 342-347. https://doi.org/10.5483/bmbrep.2019.52.5.055
- Kim, D. W., Shin, M. J., Choi, Y. J., Kwon, H. J., Lee, S. H., Lee, S., Park, J., Han, K. H., Eum, W. S. and Choi, S. Y. (2018) Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NFkappaB pathways. BMB Rep. 51, 654-659. https://doi.org/10.5483/BMBRep.2018.51.12.248
- Kim, E. K. and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
- Kim, H. L., Koedrith, P., Lee, S. M., Kim, Y. J. and Seo, Y. R. (2013) Base excision DNA repair defect in thioredoxin-1 (Trx1)-deficient cells. Mutat. Res. 751-752, 1-7. https://doi.org/10.1016/j.mrfmmm.2013.10.002
- Kim, H. R., Kim, D. W., Jo, H. S., Cho, S. B., Park, J. H., Lee, C. H., Choi, Y. J., Yeo, E. J., Park, S. Y., Kim, S. T., Yu, Y. H., Kim, D. S., Kim, H. A., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2015) Tat-biliverdin reductase A inhibits inflammatory response by regulation of MAPK and NF-kappaB pathways in Raw 264.7 cells and edema mouse model. Mol. Immunol. 63, 355-366. https://doi.org/10.1016/j.molimm.2014.09.003
- Kubo, E., Fatma, N., Akagi, Y., Beier, D. R., Singh, S. P. and Singh, D. P. (2008) TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am. J. Physiol. Cell Physiol. 294, C842-C855. https://doi.org/10.1152/ajpcell.00540.2007
- Kwon, S. H., Hong, S. I., Kim, J. A., Jung, Y. H., Kim, S. Y., Kim, H. C., Lee, S. Y. and Jang, C. G. (2011) The neuroprotective effects of Lonicera japonica THUNB. against hydrogen peroxide-induced apoptosis via phosphorylation of MAPKs and PI3K/Akt in SH-SY5Y cells. Food Chem. Toxicol. 49, 1011-1019. https://doi.org/10.1016/j.fct.2011.01.008
- Leak, R. K., Li, P., Zhang, F., Sulaiman, H. H., Weng, Z., Wang, G., Stetler, R. A., Shi, Y., Cao, G., Gao, Y. and Chen, J. (2015) Apurinic/apyrimidinic endonuclease 1 upregulation reduces oxidative DNA damage and protects hippocampal neurons from ischemic injury. Antioxid. Redox Signal. 22, 135-148. https://doi.org/10.1089/ars.2013.5511
- Lee, K. W., Zhao, X., Im, J. Y., Grosso, H., Jang, W. H., Chan, T. W., Sonsalla, P. K., German, D. C., Ichijo, H., Junn, E. and Mouradian, M. M. (2012) Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS ONE 7, e29935. https://doi.org/10.1371/journal.pone.0029935
- Li, Y., Xu, B., Xu, M., Chen, D., Xiong, Y., Lian, M., Sun, Y., Tang, Z., Wang, L., Jiang, C. and Lin, Y. (2017) 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-kappaB signalling. Pharmacol. Res. 119, 137-148. https://doi.org/10.1016/j.phrs.2017.01.026
- Li, Y. and Zhang, Z. (2015) Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia. Int. J. Clin. Exp. Pathol. 8, 14099-14109.
- Li, Z., Wang, Y., Xie, Y., Yang, Z. and Zhang, T. (2011) Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem. Res. 36, 1840-1849. https://doi.org/10.1007/s11064-011-0502-6
- Luo, P., Lu, Y., Li, C., Zhou, M., Chen, C., Lu, Q., Xu, X., He, Z. and Guo, L. (2015) Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region. Neurobiol. Learn. Mem. 123, 72-83. https://doi.org/10.1016/j.nlm.2015.05.005
- Mansour, A., Niizuma, K., Rashad, S., Sumiyoshi, A., Ryoke, R., Endo, H., Endo, T., Sato, K., Kawashima, R. and Tominaga, T. (2019) A refined model of chronic cerebral hypoperfusion resulting in cognitive impairment and a low mortality rate in rats. J. Neurosurg. 131, 892-902. https://doi.org/10.3171/2018.3.jns172274
- Mates, J. M., Segura, J. A., Alonso, F. J. and Marquez, J. (2012) Oxidative stress in apoptosis and cancer: an update. Arch. Toxicol. 86, 1649-1665. https://doi.org/10.1007/s00204-012-0906-3
- Mehla, J., Lacoursiere, S., Stuart, E., McDonald, R. J. and Mohajerani, M. H. (2018) Gradual cerebral hypoperfusion impairs fear conditioning and object recognition learning and memory in mice: potential roles of neurodegeneration and cholinergic dysfunction. J. Alzheimers Dis. 61, 283-293.
- Meuillet, E. J., Mahadevan, D., Berggren, M., Coon, A. and Powis, G. (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. Arch. Biochem. Biophys. 429, 123-133. https://doi.org/10.1016/j.abb.2004.04.020
- Miki, K., Ishibashi, S., Sun, L., Xu, H., Ohashi, W., Kuroiwa, T. and Mizusawa, H. (2009) Intensity of chronic cerebral hypoperfusion determines white/gray matter injury and cognitive/ motor dysfunction in mice. J. Neurosci. Res. 87, 1270-1281. https://doi.org/10.1002/jnr.21925
- Mo, L., Yang, C., Gu, M., Zheng, D., Lin, L., Wang, X., Lan, A., Hu, F. and Feng, J. (2012) PI3K/Akt signaling pathway-induced heme oxygenase-1 upregulation mediates the adaptive cytoprotection of hydrogen peroxide preconditioning against oxidative injury in PC12 cells. Int. J. Mol. Med. 30, 314-320. https://doi.org/10.3892/ijmm.2012.1002
- Nadeau, P. J., Charette, S. J., Toledano, M. B. and Landry, J. (2007) Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913. https://doi.org/10.1091/mbc.E07-05-0491
- Nakamura, H., Masutani, H. and Yodoi, J. (2006) Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin. Cancer Biol. 16, 444-451. https://doi.org/10.1016/j.semcancer.2006.09.001
- Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K. and Ichijo, H. (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
- Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572. https://doi.org/10.1126/science.285.5433.1569
- Shibata, M., Ohtani, R., Ihara, M., Tomimoto, H. (2004) White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35, 2598-2603. https://doi.org/10.1161/01.str.0000143725.19053.60
- Shiizaki, S., Naguro, I. and Ichijo, H. (2013) Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Adv. Biol. Regul. 53, 135-144. https://doi.org/10.1016/j.jbior.2012.09.006
- Shin, M. J., Kim, D. W., Lee, Y. P., Ahn, E. H., Jo, H. S., Kim, D. S., Kwon, O. S., Kang, T. C., Cho, Y. J., Park, J., Eum, W. S. and Choi, S. Y. (2014) Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury. Free Radic. Biol. Med. 67, 195-210. https://doi.org/10.1016/j.freeradbiomed.2013.10.815
- Sinha, K., Das, J., Pal, P. B. and Sil, P. C. (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 87, 1157-1180. https://doi.org/10.1007/s00204-013-1034-4
- Stosic-Grujicic, S., Stojanovic, I., Maksimovic-Ivanic, D., Momcilovic, M., Popadic, D., Harhaji, L., Miljkovic, D., Metz, C., Mangano, K., Papaccio, G., Al-Abed, Y. and Nicoletti, F. (2008) Macrophage migration inhibitory factor (MIF) is necessary for progression of autoimmune diabetes mellitus. J. Cell. Physiol. 215, 665-675. https://doi.org/10.1002/jcp.21346
- Sugawara, T. and Chan, P. H. (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Signal. 5, 597-607. https://doi.org/10.1089/152308603770310266
- Susanti, D., Wong, J. H., Vensel, W. H., Loganathan, U., DeSantis, R., Schmitz, R. A., Balsera, M., Buchanan, B. B. and Mukhopadhyay, B. (2014) Thioredoxin targets fundamental processes in a methane-producing archaeon, Methanocaldococcus jannaschii. Proc. Natl. Acad. Sci. U.S.A. 111, 2608-2613. https://doi.org/10.1073/pnas.1324240111
- Tao, L., Gao, E., Bryan, N. S., Qu, Y., Liu, H. R., Hu, A., Christopher, T. A., Lopez, B. L., Yodoi, J., Koch, W. J., Feelisch, M. and Ma, X. L. (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proc. Natl. Acad. Sci. U.S.A. 101, 11471-11476. https://doi.org/10.1073/pnas.0402941101
- Ueda, S., Masutani, H., Nakamura, H., Tanaka, T., Ueno, M. and Yodoi, J. (2002) Redox control of cell death. Antioxid. Redox Signal. 4, 405-414. https://doi.org/10.1089/15230860260196209
- van den Berg, A. and Dowdy, S. F. (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr. Opin. Biotechnol. 22, 888-893. https://doi.org/10.1016/j.copbio.2011.03.008
- Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
- Wang, M., Zhu, K., Zhang, L., Li, L. and Zhao, J. (2016) Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity. Mol. Med. Rep. 13, 2864-2870. https://doi.org/10.3892/mmr.2016.4855
- Wu, X., Li, L., Zhang, L., Wu, J., Zhou, Y., Zhou, Y., Zhao, Y. and Zhao, J. (2015) Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res. 1599, 20-31. https://doi.org/10.1016/j.brainres.2014.12.033
- Yamamoto, M., Yamato, E., Toyoda, S., Tashiro, F., Ikegami, H., Yodoi, J. and Miyazaki, J. (2008) Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid. Redox Signal. 10, 43-49. https://doi.org/10.1089/ars.2007.1586
- Yano, S., Morioka, M., Fukunaga, K., Kawano, T., Hara, T., Kai, Y., Hamada, J., Miyamoto, E. and Ushio, Y. (2001) Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 21, 351-360. https://doi.org/10.1097/00004647-200104000-00004
- Yeo, H., Yeo, E. J., Shin, M. J., Choi, Y. J., Lee, C. H., Kwon, H. Y., Kim, D. W., Eum, W. S. and Choi, S. Y. (2018) Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep. 51, 362-367. https://doi.org/10.5483/BMBRep.2018.51.7.101
- Yeo, H. J., Shin, M. J., Yeo, E. J., Choi, Y. J., Kim, D. W., Kim, D. S., Eum, W. S. and Choi, S. Y. (2019) Tat-CIAPIN1 inhibits hippocampal neuronal cell damage through the MAPK and apoptotic signaling pathways. Free Radic. Biol. Med. 135, 68-78. https://doi.org/10.1016/j.freeradbiomed.2019.02.028
- Yoo, M. H., Carlson, B. A., Gladyshev, V. N. and Hatfield, D. L. (2013) Abrogated thioredoxin system causes increased sensitivity to TNF-alpha-induced apoptosis via enrichment of p-ERK 1/2 in the nucleus. PLoS ONE 8, e71427. https://doi.org/10.1371/journal.pone.0071427
- Yoshida, T., Oka, S., Masutani, H., Nakamura, H. and Yodoi, J. (2003) The role of thioredoxin in the aging process: involvement of oxidative stress. Antioxid. Redox Signal. 5, 563-570. https://doi.org/10.1089/152308603770310211
- Yoshizaki, K., Adachi, K., Kataoka, S., Watanabe, A., Tabira, T., Takahashi, K. and Wakita, H. (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp. Neurol. 210, 585-591. https://doi.org/10.1016/j.expneurol.2007.12.005
- Yu, H., Shi, L., Qi, G., Zhao, S., Gao, Y. and Li, Y. (2016) Gypenoside Protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of mitogen-activated protein kinase mediated nuclear factor kappa B pathway in vitro and in vivo. Front. Pharmacol. 7, 148.
- Zhang, J., Xia, J., Zhang, Y., Xiao, F., Wang, J., Gao, H., Liu, Y., Rong, S., Yao, Y., Xu, G. and Li, J. (2016) HMGB1-TLR4 signaling participates in renal ischemia reperfusion injury and could be attenuated by dexamethasone-mediated inhibition of the ERK/NF-kappaB pathway. Am. J. Transl. Res. 8, 4054-4067.
- Zhang, R., Al-Lamki, R., Bai, L., Streb, J. W., Miano, J. M., Bradley, J. and Min, W. (2004) Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ. Res. 94, 1483-1491. https://doi.org/10.1161/01.RES.0000130525.37646.a7
- Zhu, N., Cai, C., Zhou, A., Zhao, X., Xiang, Y. and Zeng, C. (2017) Schisandrin B prevents hind limb from ischemia-reperfusion-induced oxidative stress and inflammation via mapk/nf-kappaB pathways in rats. Biomed. Res. Int. 2017, 4237973.