• Title/Summary/Keyword: signal intelligence

Search Result 237, Processing Time 0.022 seconds

Improved ultrasonic beacon system for indoor localization

  • Shin, Su-Young;Choi, Jong-Suk;Kim, Byoung-Hoon;Park, Mi-Gnong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1775-1780
    • /
    • 2005
  • One of the most important factors so that mobile objects can achieve their purpose is the information about their positions. In this paper, we propose an improved beacon system, to which ultrasonic sensors are attached, for the indoor localization of mobile objects. We have researched so that it can cover the wider space and estimate more accurate positions than the existent beacon systems. The existent beacon systems have the constraint that one beacon cannot cover wide area since ultrasonic sensors have limits in the angle of signal (beam-angle) on which their signal strength depends. Hence, we used the active beacon which consists of a pan-tilt mechanism and a beacon module. The active beacon system can always aim at mobile objects in order to transmit the strongest signal of the ultrasonic sensors into the objects using the pan-tilt mechanism. In addition, this system is inexpensive because it can decrease the number of beacons by about a half of the beacons of the existent system. Finally, the results show what is the difference between the active beacon system and existent beacon systems, and how accurate it is.

  • PDF

Digital signal change through artificial intelligence machine learning method comparison and learning (인공지능 기계학습 방법 비교와 학습을 통한 디지털 신호변화)

  • Yi, Dokkyun;Park, Jieun
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.251-258
    • /
    • 2019
  • In the future, various products are created in various fields using artificial intelligence. In this age, it is a very important problem to know the operation principle of artificial intelligence learning method and to use it correctly. This paper introduces artificial intelligence learning methods that have been known so far. Learning of artificial intelligence is based on the fixed point iteration method of mathematics. The GD(Gradient Descent) method, which adjusts the convergence speed based on the fixed point iteration method, the Momentum method to summate the amount of gradient, and finally, the Adam method that mixed these methods. This paper describes the advantages and disadvantages of each method. In particularly, the Adam method having adaptivity controls learning ability of machine learning. And we analyze how these methods affect digital signals. The changes in the learning process of digital signals are the basis of accurate application and accurate judgment in the future work and research using artificial intelligence.

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal (초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류)

  • Im, Rae-Muk;Sin, Dong-Hwan;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

Performance Analysis of Adaptive Beamforming System Based on Planar Array Antenna (평면 배열 안테나 기반의 적응 빔형성 시스템 성능 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The signal intelligence (SIGINT) technology is actively used for collecting various data, in a number of fields, including a military industry. In order to collect the signal information and data and to transmit/receive the collected data efficiently, the accurate angle-of-arrival (AOA) information is required and communication disturbance from the interference or jamming signal should be minimized. In this paper, we present the structure of an adaptive beam-forming satellite system based on the planar array antenna, for collecting and transmitting/receiving the signal information and data efficiently. The presented adaptive beam-forming system consists of an antenna in the form of a planar array, an AOA estimator based on the Multiple Signal Classification (MUSIC) algorithm, an adaptive Minimum Variance Distortionless Response (MVDR) interference canceler, a signal processing and D/B unit, and a transmission beamformer based on Minimum mean Square Error (MMSE). In addition, through the computer simulation, we evaluate and analyze the performance of the proposed system.

Signal-Based Fault Detection and Diagnosis on Electronic Packaging and Applications of Artificial Intelligence Techniques (시그널 기반 전자패키지 결함검출진단 기술과 인공지능의 응용)

  • Tae Yeob Kang;Taek-Soo Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.30-41
    • /
    • 2023
  • With the aggressive down-scaling of advanced integrated circuits (ICs), electronic packages have become the bottleneck of both reliability and performance of whole electronic systems. In order to resolve the reliability issues, Institute of Electrical and Electronics Engineers (IEEE) laid down a roadmap on fault detection and diagnosis (FDD), thrusting the digital twin: a combination of reliability physics and artificial intelligence (AI). In this paper, we especially review research works regarding the signal-based FDD approaches on the electronic packages. We also discuss the research trend of FDD utilizing AI techniques.

Aqua-Aware: Underwater Optical Wirelesss Communication enabled Compact Sensor Node, Temperature and Pressure Monitoring for Small Moblie Platforms

  • Maaz Salman;Javad Balboli;Ramavath Prasad Naik;Wan-Young Chung;Jong-Jin Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.50-61
    • /
    • 2022
  • This work demonstrates the design and evaluation of Aqua-Aware, a lightweight miniaturized light emitting diode (LED) based underwater compact sensor node which is used to obtain different characteristics of the underwater environment. Two optical sensor nodes have been designed, developed, and evaluated for a short and medium link range called as Aqua-Aware short range (AASR) and Aqua-Aware medium range (AAMR), respectively. The hardware and software implementation of proposed sensor node, algorithms, and trade-offs have been discussed in this paper. The underwater environment is emulated by introducing different turbulence effects such as air bubbles, waves and turbidity in a 4-m water tank. In clear water, the Aqua-Aware achieved a data rate of 0.2 Mbps at communication link up to 2-m. The Aqua-Aware was able to achieve 0.2 Mbps in a turbid water of 64 NTU in the presence of moderate water waves and air bubbles within the communication link range of 1.7-m. We have evaluated the luminous intensity, packet success rate and bit error rate performance of the proposed system obtained by varying the various medium characteristics.

Pattern Classification of the Strength of Concrete by Feature Parameters and Evidence Accumulation of Ultrasonic Signal (초음파신호의 특징 파라메터 및 증거축적 방법을 이용한 콘크리트 강도 분류)

  • Kim, Se-Dong;Sin, Dong-Hwan;Lee, Yeong-Seok;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1335-1343
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, zero-crossing(ZCR), mean frequency(MEANF), median frequency(MEDF) and autoregressive model coefficient(ARC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

Multiple Plankton Detection and Recognition in Microscopic Images with Homogeneous Clumping and Heterogeneous Interspersion

  • Soh, Youngsung;Song, Jaehyun;Hae, Yongsuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2018
  • The analysis of plankton species distribution in sea or fresh water is very important in preserving marine ecosystem health. Since manual analysis is infeasible, many automatic approaches were proposed. They usually use images from in situ towed underwater imaging sensor or specially designed, lab mounted microscopic imaging system. Normally they assume that only single plankton is present in an image so that, if there is a clumping among multiple plankton of same species (homogeneous clumping) or if there are multiple plankton of different species scattered in an image (heterogeneous interspersion), they have a difficulty in recognition. In this work, we propose a deep learning based method that can detect and recognize individual plankton in images with homogeneous clumping, heterogeneous interspersion, or combination of both.