DOI QR코드

DOI QR Code

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik (Department of Artificial Intelligence and Convergence, Pukyong national university) ;
  • Maaz Salman (Department of Artificial Intelligence and Convergence, Pukyong national university) ;
  • Wan-Young Chung (Department of Electronic Engineering, Pukyong national university)
  • Received : 2023.01.11
  • Accepted : 2023.02.10
  • Published : 2023.03.31

Abstract

Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

Keywords

Acknowledgement

This research work was supported by a Research Grant of Pukyong National University (2021).

References

  1. Naik, R. P., Simha, G. G., & Krishnan, P. (2021). Wireless-optical-communication-based cooperative IoT and IoUT system for ocean monitoring applications. Applied Optics, 60(29), 9067-9073. https://doi.org/10.1364/AO.435887
  2. Hanson, F., & Radic, S. (2008). High bandwidth underwater optical communication. Applied optics, 47(2), 277-283. https://doi.org/10.1364/AO.47.000277
  3. Kumar, L. B., Ramavath, P. N., & Krishnan, P. (2022). Performance analysis of multi-hop FSO convergent with UWOC system for security and tracking in navy applications. Optical and Quantum Electronics, 54(6), 1-26. https://doi.org/10.1007/s11082-021-03373-1
  4. Naik, R. P., Acharya, U. S., Lal, S., & Krishnan, P. (2022). Performance investigation of underwater wireless optical system for image transmission through the oceanic turbulent optical medium. Optical and Quantum Electronics, 54(4), 1-16. https://doi.org/10.1007/s11082-021-03373-1
  5. Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE access, 4, 1518-1547. https://doi.org/10.1109/ACCESS.2016.2552538
  6. Mohan, S., & Simon, P. (2020). Underwater image enhancement based on histogram manipulation and multiscale fusion. Procedia Computer Science, 171, 941-950. https://doi.org/10.1016/j.procs.2020.04.102
  7. Ramavath, P. N., Udupi, S. A., & Krishnan, P. (2020). High-speed and reliable underwater wireless optical communication system using multiple-input multiple-output and channel coding techniques for IoUT applications. Optics Communications, 461, 125229.
  8. Liu, K., & Liang, Y. (2021). Underwater image enhancement method based on adaptive attenuation-curve prior. Optics express, 29(7), 10321-10345. https://doi.org/10.1364/OE.413164
  9. Levidala, B. K., Ramavath, P. N., & Krishnan, P. (2021). Performance enhancement using multiple input multiple output in dual-hop convergent underwater wireless optical communication-free-space optical communication system under strong turbulence with pointing errors. Optical Engineering, 60(10), 106106.
  10. Pan, Z., Xiao, Y., Zhou, L., Cao, Y., Yang, M., & Chen, W. (2021). Non-line-of-sight optical information transmission through turbid water. Optics Express, 29(24), 39498-39510. https://doi.org/10.1364/OE.440002
  11. Ramavath, P. N., Kumar, A., Shashikant Godkhindi, S., & Acharya, U. S. (2018). Experimental studies on the performance of underwater optical communication link with channel coding and interleaving. Csi Transactions on Ict, 6(1), 65-70. https://doi.org/10.1007/s40012-017-0179-3
  12. Oubei, H. M., Duran, J. R., Janjua, B., Wang, H. Y., Tsai, C. T., Chi, Y. C., ... & Ooi, B. S. (2015). 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Optics express, 23(18), 23302-23309. https://doi.org/10.1364/OE.23.023302
  13. Liu, X., Yi, S., Zhou, X., Fang, Z., Qiu, Z. J., Hu, L., & Tian, P. (2017). 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Optics express, 25(22), 27937-27947.
  14. Ramavath, P. N., Udupi, S. A., & Krishnan, P. (2020). Experimental demonstration and analysis of underwater wireless optical communication link: Design, BCH coded receiver diversity over the turbid and turbulent seawater channels. Microwave and Optical Technology Letters, 62(6), 2207-2216. https://doi.org/10.1002/mop.32311
  15. Ancuti, C. O., Ancuti, C., De Vleeschouwer, C., & Bekaert, P. (2017). Color balance and fusion for underwater image enhancement. IEEE Transactions on image processing, 27(1), 379-393.
  16. Iqbal, K., Salam, R. A., Osman, A., & Talib, A. Z. (2007). Underwater Image Enhancement Using an Integrated Colour Model. IAENG International Journal of computer science, 34(2).
  17. Cvijetic, N., Qian, D., Yu, J., Huang, Y. K., & Wang, T. (2010). Polarization-multiplexed optical wireless transmission with coherent detection. Journal of Lightwave Technology, 28(8), 1218-1227. https://doi.org/10.1109/JLT.2010.2044017
  18. Fried, D. L. (1967). Optical heterodyne detection of an atmospherically distorted signal wave front. Proceedings of the IEEE, 55(1), 57-77. https://doi.org/10.1109/PROC.1967.5377
  19. Vali, Z., Gholami, A., Ghassemlooy, Z., Omoomi, M., & Michelson, D. G. (2018). Experimental study of the turbulence effect on underwater optical wireless communications. Applied optics, 57(28), 8314-8319. https://doi.org/10.1364/AO.57.008314
  20. Korotkova, O., Farwell, N., & Shchepakina, E. (2012). Light scintillation in oceanic turbulence. Waves in Random and Complex Media, 22(2), 260-266. https://doi.org/10.1080/17455030.2012.656731
  21. Ata, Y., & Baykal, Y. (2014). Scintillations of optical plane and spherical waves in underwater turbulence. JOSA A, 31(7), 1552-1556. https://doi.org/10.1364/JOSAA.31.001552
  22. Naik, R. P., Acharya, U. S., Lal, S., & Krishnan, P. (2022). Performance investigation of underwater wireless optical system for image transmission through the oceanic turbulent optical medium. Optical and Quantum Electronics, 54(4), 1-16. https://doi.org/10.1007/s11082-021-03373-1
  23. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE signal processing letters, 9(3), 81-84. https://doi.org/10.1109/97.995823
  24. Lin, H. M., & Willson, A. N. (1988). Median filters with adaptive length. IEEE transactions on circuits and systems, 35(6), 675-690. https://doi.org/10.1109/31.1805
  25. Sun, T., & Neuvo, Y. (1994). Detail-preserving median based filters in image processing. Pattern recognition letters, 15(4), 341-347. https://doi.org/10.1016/0167-8655(94)90082-5
  26. Garnett, R., Huegerich, T., Chui, C., & He, W. (2005). A universal noise removal algorithm with an impulse detector. IEEE Transactions on image processing, 14(11), 1747-1754. https://doi.org/10.1109/TIP.2005.857261
  27. Uppalapati, A., Naik, R. P., & Krishnan, P. (2020). Analysis of M-QAM modulated underwater wireless optical communication system for reconfigurable UOWSNs employed in river meets ocean scenario. IEEE Transactions on Vehicular Technology, 69(12), 15244-15252. https://doi.org/10.1109/TVT.2020.3037342
  28. Salman, J. Bolboli and W. -Y. Chung, "Experimental Demonstration and Evaluation of BCH-Coded UWOC Link for Power-Efficient Underwater Sensor Nodes," in IEEE Access, vol. 10, pp. 72211-72226, 2022, doi: 10.1109/ACCESS.2022.3188247.
  29. Maaz Salman, Javad Balboli, Ramavath Prasad Naik, W.-Y. Chung and J.-J. Kim. "Aqua-Aware: Underwater Optical Wirelesss Communication enabled Compact Sensor Node, Temperature and Pressure Monitoring for Small Moblie Platforms", Journal of the Institute of Convergence Signal Processing, 23(2), pp. 50-61, 2022