• Title/Summary/Keyword: signal game

Search Result 69, Processing Time 0.022 seconds

Implementation of Educational Brain Motion Controller for Machine Learning Applications

  • Park, Myeong-Chul;Choi, Duk-Kyu;Kim, Tae-Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.111-117
    • /
    • 2020
  • Recently, with the high interest of machine learning, the need for educational controllers to interface with physical devices has increased. However, existing controllers are limited in terms of high cost and area of utilization for educational purposes. In this paper, motion control controllers using brain waves are proposed for the purpose of students' machine learning applications. The brain motion that occurs when imagining a specific action is measured and sampled, then the sample values were learned through Tensor Flow and the motion was recognized in contents such as games. Movement variation for motion recognition consists of directionality and jump motion. The identification of the recognition behavior is sent to a game produced by an Unreal Engine to operate the character in the game. In addition to brain waves, the implemented controller can be used in various fields depending on the input signal and can be used for educational purposes such as machine learning applications.

Applying of SOM for Automatic Recognition of Tension and Relaxation (긴장과 이완상태의 자동인식을 위한 SOM의 적용)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Ko, Il-Ju;Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • We propose a system that automatically recognizes the tense or relaxed condition of scrolling-shooting game subject that plays. Existing study compares the changed values of source of stimulation to the player by suggesting the source, and thus involves limitation in automatic classification. This study applies SOM of unsupervised learning for automatic classification and recognition of player's condition change. Application of SOM for automatic recognition of tense and relaxed condition is composed of two steps. First, ECG measurement and analysis, is to extract characteristic vector through HRV analysis by measuring ECG after having the player play the game. Secondly, SOM learning and recognition, is to classify and recognize the tense and relaxed conditions of player through SOM learning of the input vectors of heart beat signals that the characteristic extracted. Experiment results are divided into three groups. The first is HRV frequency change and the second the SOM learning results of heart beat signal. The third is the analysis of match rate to identify SOM learning performance. As a result of matching the LF/HF ratio of HRV frequency analysis to the distance of winner neuron of SOM based on 1.5, a match rate of 72% performance in average was shown.

A MEMS-Based Finger Wearable Computer Input Devices (MEMS 기반 손가락 착용형 컴퓨터 입력장치)

  • Kim, Chang-su;Jung, Se-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1103-1108
    • /
    • 2016
  • The development of a variety of sensor technology, users smart phone, the use of motion recognition apparatus such as a console game machines is increasing. It tends to user needs motion recognition-based input device are increasing. Existing motion recognition mouse is equipped with a modified form of the mouse button on the outside and serves as a wheel mouse left and right buttons. Existing motion recognition mouse is to manufacture a small, there is a difficulty to operate the button. It is to apply the motion recognition technology the motion recognition technology is used only pointing the cursor there is a limit. In this paper, use of MEMS-based motion recognition sensor, the body of the two-point operation data by recognizing the operation of the (thumb and forefinger) and generating a control signal, followed by studies on the generated control signal to a wireless transmitting computer input device.

An EMG-based Input Interface Technology for the Tetraplegic and Its Applications (사지마비 장애인을 위한 근전도 기반 입력 인터페이스 기술 및 그 응용)

  • Jeong, Hyuk;Kim, Jong-Sung;Son, Wook-Ho;Kim, Young-Hoon
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.9-17
    • /
    • 2006
  • We propose an EMG-based input interface technology for helping the tetraplegic to utilize mouse, keyboard and power wheelchair. Among possible actions for the tetraplegic utilizing these devices, teeth-clenching is chosen as an input action. By clenching left, right or both teeth, and controlling the clenching duration, several input commands for utilizing the devices can be conducted. EMG signals generated by teeth-clenching are acquired around one's left and right temples and they are used as control sources for utilizing the devices. We develop signal acquisition devices, signal processing algorithms, and prototype systems such as power wheelchair control, mouse control, and game control. Our experimental results with the tetraplegic show that the proposed method is useful for utilizing the devices.

  • PDF

A Study of an MEMS-based finger wearable computer input devices (MEMS 기반 손가락 착용형 컴퓨터 입력장치에 관한 연구)

  • Kim, Chang-su;Jung, Se-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.791-793
    • /
    • 2016
  • In the development of various types of sensor technology, the general users smartphone, the environment is increased, which can be seen in contact with the movement recognition device, such as a console game machine (Nintendo Wii), an increase in the user needs of the action recognition-based input device there is a tendency to have. Mouse existing behavior recognition, attached to the outside, is mounted in the form of mouse button is deformed, the left mouse was the role of the right button and a wheel, an acceleration sensor (or a gyro sensor) inside to, plays the role of a mouse cursor, is to manufacture a compact, there is a difficulty in operating the button, to apply a motion recognition technology is used to operate recognition technology only pointing cursor is limited. Therefore, in this paper, using a MEMS-based motion-les Koguni tion sensor (Motion Recognition Sensor), to recognize the behavior of the two points of the human body (thumb and forefinger), to generate the motion data, and this to the foundation, compared to the pre-determined matching table (moving and mouse button events cursor), and generates a control signal by determining, were studied the generated control signal input device of the computer wirelessly transmitting.

  • PDF

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

Design and Implementation of an LED Mood Lighting System Using Personalized Color Sequence Generation

  • Jeong, Gu-Min;Yeo, Jong-Yun;Won, Dong Mook;Bae, Sung-Han;Park, Kyung-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3182-3196
    • /
    • 2012
  • In this paper, we present a new LED (Light Emitting Diode) mood lighting system interacting with smartphones based on the generation of different light sequences. In the proposed system, one light sequence is considered to be one unit of the service contents, which is then transmitted through a network and played in an LED lighting system. To this end, we propose a novel generation scheme using a smartphone, and a decoding/playing mechanism in an LED lighting system. The lighting sequences have a fixed period divided into predefined time units. Two modes - basic and interpolation - are supported in each time unit when playing a color sequence. In the basic mode, the color is maintained for the entire time unit, whereas in the interpolation mode the color is interpolated. The sequence is decoded and played in the lighting circuit by changing the duty cycle of a PWM (Pulse Width Modulation) signal. A demonstration system of the overall proposed method was using smartphones, a server and an LED lighting system. The results from this experiment show the validity and applicability of the proposed scheme.

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Pazhayakandathil, Sindhu;Sukumaran, Deepak Kayiparambil;Koodamannu, Abdul Hameed
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.626-636
    • /
    • 2019
  • A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

A Study on Reduction of Mutual Nonlinear Interferences in Cognitive Radio System (무선 인지형 시스템에서 상호 비선형 간섭 감소에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.283-288
    • /
    • 2018
  • In this paper, it is required that the next generation wireless transmission system can support a large number of users without distortion of transmission signal with high data rate in various different propagation environment while using limited resources as efficiently as possible, and therefore an efficient transmission system is continuously required. Because of the large amount of data to be handled in a limited frequency band, a very complex digital modulation scheme is adopted. the linearity of the power amplifier determines the linearity of the entire communication system, and thus a linear amplifier is required. In cognitive radion systems, there is a power control issue in the relationship between primary and secondary users. This problem is solved by simulating the communication system so as to select the cognitive radio power while power control while overcoming linearity by using feed-forward PA.

Study on R-peak Detection Algorithm of Arrhythmia Patients in ECG (심전도 신호에서 부정맥 환자의 R파 검출 알고리즘 연구)

  • Ahn, Se-Jong;Lim, Chang-Joo;Kim, Yong-Gwon;Chung, Sung-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4443-4449
    • /
    • 2011
  • ECG consists of various types of electrical signal on the heart, and feature point of these signals can be detected by analyzing the arrhythmia. So far, feature points extraction method for the detection of arrhythmia done in the many studies. However, it is not suitable for portable device using real time operation due to complicated operation. In this paper, R-peak were extracted using R-R interval and QRS width informations on patients. First, noise of low frequency bands eliminated using butterworth filter, and the R-peak was extracted by R-R interval moving average and QRS width moving average. In order to verify, it was experimented to compare the R-peak of data in MIT-BIH arrhythmia database and the R-peak of suggested algorithm. As a results, it showed an excellent detection for feature point of R-peak, even during the process of operation could be efficient way to confirm.