DOI QR코드

DOI QR Code

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Received : 2018.09.05
  • Accepted : 2019.01.22
  • Published : 2019.10.01

Abstract

A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

Keywords

References

  1. L. Dai et al., Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends, IEEE Commun. Mag. 53 (2015), 74-81. https://doi.org/10.1109/MCOM.2015.7263349
  2. Y. Satio et al., Non-Orthogonal Multiple Access (NOMA) for cellular radio access, In Proc. IEEE Veh. Technol. Conf., Dresden, Germany, 2013, pp. 1-5.
  3. C. L. Wang, J. Y. Chen, and Y. J. Chen, Power allocation for a downlink non-orthogonal multiple access system, IEEE Wireless Commun. Lett. 5 (2016), 532-535. https://doi.org/10.1109/LWC.2016.2598833
  4. S. Timotheou and I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems, IEEE Sig. Process. Lett. 22 (2015), 1647-1651. https://doi.org/10.1109/LSP.2015.2417119
  5. J. Choi, Power allocation for max-sum rate and max-min rate proportional fairness in NOMA, IEEE Commun. Lett. 20 (2016), 2055-2058. https://doi.org/10.1109/LCOMM.2016.2596760
  6. C. L. Wang, J. Y. Chen, and Y. J. Chen, Power allocation for a downlink non-orthogonal multiple access system, IEEE Wirel. Commun. Lett. 5 (2016), 532-535. https://doi.org/10.1109/LWC.2016.2598833
  7. P. Parida and S. S. Das, Power allocation in OFDM based NOMA systems: a DC programming approach, In Proc. IEEE Globecom Workshops, Austin, TX, USA, Dec. 2014, pp. 1026-1031.
  8. B. Di, L. Song, and Y. Li, Sub-channel assignment power allocation and user scheduling for non-orthogonal multiple access networks, IEEE Trans. Wirel. Commun. 15 (2016), 7686-7698. https://doi.org/10.1109/TWC.2016.2606100
  9. G. Nain, S. S. Das, and A. Chatterjee, Low complexity user selection with optimal power allocation in downlink NOMA, IEEE Wirel. Commun. Lett. 7 (2018), 158-161. https://doi.org/10.1109/LWC.2017.2762303
  10. M. F. Hanif et al., A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems, IEEE Trans. Sig. Process. 64 (2016), 76-88. https://doi.org/10.1109/TSP.2015.2480042
  11. Y. Sun et al., Optimal joint power and subcarrier allocation for full duplex multicarrier non-orthogonal multiple access systems, IEEE Trans. Commun. 65 (2017), 1077-1091. https://doi.org/10.1109/TCOMM.2017.2650992
  12. J. Wang et al., Convexity of weighted sum rate maximization in NOMA systems, IEEE Signal Process. Lett. 24 (2017), 1323-1327. https://doi.org/10.1109/LSP.2017.2722546
  13. J. Zhu et al., On optimal power allocation for downlink non- orthogonal multiple access systems, IEEE J. Sel. Areas Commun. 35 (2017), 2744-2757. https://doi.org/10.1109/jsac.2017.2725618
  14. F. Fang et al., Energy-efficient resource allocation for downlink non-orthogonal multiple access network, IEEE Trans. Commun. 64 (2016), 3722-3732. https://doi.org/10.1109/TCOMM.2016.2594759
  15. Y. Zhang et al., Energy-efficient transmission design in non-orthogonal multiple access, IEEE Trans. Veh. Technol. 66 (2017), 2852-2857. https://doi.org/10.1109/TVT.2016.2578949
  16. J. Cui, Z. Ding, and P. Fan, A novel power allocation scheme under outage constraints in NOMA systems, IEEE Sig. Process. Lett. 23 (2016), 1226-1230. https://doi.org/10.1109/LSP.2016.2591561
  17. W. Zhiqiang, D. W. K. Ng, and J. Yuan, Power-efficient resource allocation for MC-NOMA with statistical channel state information, In Proc. IEEE Global Commun. Conf. GLOBECOM, Washington, DC, USA, Dec. 2016, pp. 1-7.
  18. J. Choi, Joint rate and power allocation for NOMA with statistical CSI, IEEE Trans. Commun. 65 (2017), 4519-4528. https://doi.org/10.1109/TCOMM.2017.2720176
  19. C. Li et al., Price-based power allocation for non-orthogonal multiple access systems, IEEE Wirel. Commun. Lett. 5 (2016), 664-667. https://doi.org/10.1109/LWC.2016.2613972
  20. Z. Wang, L. Jiang, and C. He, A novel price-based power allocation algorithm in non-orthogonal multiple access networks, IEEE Commun. Lett. 7 (2018), 230-233. https://doi.org/10.1109/LWC.2017.2768367
  21. Z. Fan et al., Price-based power allocation with rate proportional fairness constraint in downlink non-orthogonal multiple access systems, IEICE Trans. Fund. Electron. Commun. Comput. Sci. E100-A (2017), no. 11, 2543-2546. https://doi.org/10.1587/transfun.E100.A.2543
  22. Z. Wang, L. Jiang, C. He, Optimal price-based power control algorithm in cognitive radio networks, IEEE Trans. Wirel. Commun. 13 (2014), 5909-5920. https://doi.org/10.1109/TWC.2014.2318708
  23. H. Yang, X. Xie, and A. V. Vasilakos, Stackelberg game based power control with outage probability constraints for cognitive radio networks, IJDSN 11 (2015), 1-9. https://doi.org/10.3923/ijds.2016.1.10
  24. Y. Wu, T. Zhang, and D. H. K. Tsang, Joint pricing and power allocation for dynamic spectrum access networks with Stackelberg game model, IEEE Trans. Wirel. Commun. 10 (2011), 12-19. https://doi.org/10.1109/TWC.2010.120310.091430
  25. Z. Yang et al., On the performance of non-orthogonal multiple access systems with partial channel information, IEEE Trans. Commun. 64 (2016), 654-667. https://doi.org/10.1109/TCOMM.2015.2511078
  26. X. Wang et al., Outage analysis for downlink NOMA with statistical channel state information, IEEE Wirel. Commun. Lett. 7 (2018), 142-145. https://doi.org/10.1109/LWC.2017.2761343
  27. S. Kandukuri and S. Boyd, Optimal power control in interference limited fading wireless channels with outage-probability specifications, IEEE Trans. Wirel. Commun. 1 (2002), 46-55. https://doi.org/10.1109/7693.975444
  28. J. Papandriopoulos, J. Evans, and S. Dey, Optimal power control for Rayleigh-Faded multiuser systems with outage constraints, IEEE Trans. Wirel. Commun. 4 (2005), 2705-2715. https://doi.org/10.1109/TWC.2005.858019
  29. Z. Wei et al., Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information, IEEE Trans. Commun. 65 (2017), 3944-3961. https://doi.org/10.1109/TCOMM.2017.2709301
  30. C. Joe-Wong et al., Multiresource allocation: fairness-efficiency tradeoffs in a unifying framework, IEEE/ACM Trans. Netw. 21 (2013), 1785-1798. https://doi.org/10.1109/TNET.2012.2233213