• Title/Summary/Keyword: signal cascade

Search Result 129, Processing Time 0.023 seconds

Modulation of Large Conductance $Ca^{2+}-activated$ $K^+4$ Channel of Skin Fibroblast (CRL-1474) by Cyclic Nucleotides

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • Potassium channels in human skin fibroblast have been studied as a possible site of Alzheimer disease pathogenesis. Fibroblasts in Alzheimer disease show alterations in signal transduction pathway such as changes in $Ca^{2+}$ homeostasis and/or $Ca^{2+}-activated$ kinases, phosphatidylinositol cascade, protein kinase C activity, cAMP levels and absence of specific $K^+$ channel. However, little is known so far about electrophysiological and pharmacological characteristics of large-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) channel in human fibroblast (CRL-1474). In the present study, we found Iberiotoxin- and TEA-sensitive outward rectifying oscillatory current with whole-cell recordings. Single channel analysis showed large conductance $K^{+}$ channels (106 pS of chord conductance at +40 mV in physiological $K^+$ gradient). The 106 pS channels were activated by membrane potential and $[Ca^{2+}]_i$, consistent with the known properties of $BK_{Ca}$ channels. $BK_{Ca}$ channels in CRL-1474 were positively regulated by adenylate cyclase activator ($10{\mu}M$ forskolin), 8-Br-cyclic AMP ($300{\mu}M$) or 8-Br-cyclic GMP ($300{\mu}M$). These results suggest that human skin fibroblasts (CR-1474) have typical $BK_{Ca}$ channel and this channel could be modulated by c-AMP and c-GMP. The electrophysiological characteristics of fibroblasts might be used as the diagnostic clues for Alzheimer disease.

Optimal Grayscale Morphological Filters Under the LMS Criterion (LMS 알고리즘을 이용한 형태학 필터의 최적화 방안에 관한 연구)

  • 이경훈;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1095-1106
    • /
    • 1994
  • This paper presents a method for determining optimal grayscale function processing(FP) morphological filters under the least square (LMS) error criterion. The optimal erosion and dilation filters with a grayscale structuring element(GSE) are determined by minimizing the mean square error (MSE) between the desired signal and the filter output. It is shown that convergence of the erosion and dilation filters can be achieved by a proper choice of the step size parameter of the LMS algorithm. In an attempt to determine optimal closing and opening filters, a matrix representation of both opening and closing with a basis matrix is proposed. With this representation, opening and closing are accomplished by a local matrix operation rather than cascade operations. The LMS and back-propagation algorithm are utilzed for obtaining the optimal basis matrix for closing and opening. Some results of optimal morphological filters applied to 2-D images are presented.

  • PDF

Design of a 7-bit 2GSPS Folding/Interpolation A/D Converter with a Self-Calibrated Vector Generator (자체보정 벡터 발생기를 이용한 7-bit 2GSPS A/D Converter의 설계)

  • Kim, Seung-Hun;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.14-23
    • /
    • 2011
  • In this paper, a 7-bit 2GSPS folding/interpolation A/D Converter(ADC) with a Self-Calibrated Vector Generator is proposed. The ADC structure is based on a folding/interpolation architecture whose folding/interpolation rate is 4 and 8, respectively. A cascaded preprocessing block is not only used in order to drive the high input signal frequency, but the resistive interpolation is also used to reduce the power consumption. Based on a novel self-calibrated vector generator, further, offset errors due to device mismatch, parasitic resistors. and parasitic capacitance can be reduced. The chip has been fabricated with a 1.2V 0.13um 1-poly 7-metal CMOS technology. The effective chip area including the calibration circuit is 2.5$mm^2$. SNDR is about 39.49dB when the input frequency is 9MHz at 2GHz sampling frequency. The SNDR is improved by 3dB with the calibration circuit.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Jin, Bonghwan;Jnawali, Hum Nath;Jun, Bong-Hyun;Lee, Jee-Young;Heo, Yong-Seok;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.594-599
    • /
    • 2013
  • The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-${\alpha}$, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, $8.79{\times}10^5M^{-1}$. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.

Apoptotic Effects and Mechanism Study of Scopoletin in HepG2 Cells (Scopoletin의 간암세포에 대한 고사 유도 효과 및 기전 연구)

  • Kwon Kang-Beom;Kim Eun-Kyung;Park Sung-Joo;Song Ho-Joon;Lee Young-Rae;Park Byung-Hyun;Park Jin-Woo;Ryu Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1594-1598
    • /
    • 2005
  • Scopoletin (6-methoxy-7-hydrorycournarin) is a phenolic coumarin and a member of the phytoalexins. In this study we investigated whether scopoletin causes apoptosis in human hepatoma HepG2 cells and, if so, by what mechanisms. We report that scopoletin induced apoptosis as confirmed by a chromatin condensation. The signal cascade acivated by scopoletin included the activation of caspase-3 as evidenced by increased pretense activity. Activation of caspase-3 resulted in the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) to 85 kDa cleavage product in a dose-dependent fashion. Also, scopoletin-induced apoptotic mechanism of HepG2 cells involved the generation of hydrogen peroxide. Taken together, these results suggest that scopgletin induces hydrogen peroxide generation, which, in turn, causes activation of caspase-3, degradation of PARP, and eventually leads to apoptotic cell death in HepG2 cells.

Apoptotic Signaling Pathway by Cadmium in Hepalclc7 cells (Hepa1c1c7 세포에서 카드뮴에 의한 세포사멸 신호전달체계에 관한 연구)

  • 오경재;염정호
    • Toxicological Research
    • /
    • v.17 no.3
    • /
    • pp.215-223
    • /
    • 2001
  • Cadmium is an ubiquitous toxic metal and chronic exposure to cadmium results in the accumulation of cadmium in the liver and kidneys. In contrast, acute exposure leads to damage mainly in the liver. Apoptosis induced by cadmium has been shown in many tissues in vivo and in cultured cells in vitro. However, the molecular mechanism of cadmium-induced apoptosis is not clear in hepatocyte. To investigate the induction of apoptosis in the hepatocyte, we used mouse hepatoma cell line, Hepalclc7 cells, and analysed the molecules that involved in cadmium-induced apoptosis. Cadmium induced the genomic DNA fragmentation, PARP cleavage, and activation of caspase-3 like protease. Caspase-9 cysteine protease was activated in a time-dependent manner but caspase-8 cysteine protease was not significantly activated in cadmium-treated Hepalclc7 cells. Cadmium also induced mitochondrial dysfunction including cytochrome c release from mitochondria, change oj mitochondrial membrane potential tranition, and tranlocation of Bax Protein into mitochondria. These results strong1y indicated that the signal Pathway of apoptotic death in cadmium-treated Hepalclc7 cells is modulated by caspase cascade via mitochondria.

  • PDF

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF

Inhibition of Cyclooxygenase and Prostaglandin E2 Synthesis by Crude Methanolic Extract from Euonymus Alatus (Thunb.) Sieb in SKBR3 Human Breast Cancer Cell Line

  • Kim Joong-Oh;Jang Tae-Hyun;Kim Min-Sung;Kim Dong-Il;Lee Tae-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.37-45
    • /
    • 2005
  • In the present study, we examined the effect of crude methanolic extract (CME) from Euonymus alatus (Thunb.) Sieb on arachidonic acid (AA) cascade in SKBR3 human breast cancer cell line. CME had a potent inhibitory activity of prostaglandin E2 (PGE2) release induced by A23187, a $Ca^{2+}$ ionophore. The inhibition was concentration-dependent, with the 50 value of about 5 M. CME had no inhibitory effect on A23187-induced phosphorylation of p42/p44 extracellular signal regulated kinase/mitogen-activated protein kinase or on the liberation of [14C]-AA from the cells labeled with [14C]-AA. However, CME concentration-dependently inhibited the conversion of AA to $PGE_2$ in microsomal preparations, showing its possible inhibition of cyclooxygenase (COX). In enzyme assay in vitro, CME inhibited the activities of both constitutive COX (COX­I) and inducible COX (COX-2) in a concentration-dependent manner, with the 50 values of about 0.8 and 2M, respectively. Lineweaver-Burk plot analysis indicated that CME competitively inhibited the activities of both COX-l and -2. This study is a first demonstration that CME directly inhibits COX activity.

  • PDF

p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice

  • Moon, Phil-Dong;Han, Na-Ra;Lee, Jin Soo;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.176-182
    • /
    • 2021
  • Background: Atopic dermatitis (AD) is associated with chronic skin inflammatory reactions. p-coumaric acid (pCA) is an active ingredient of Panax ginseng Meyer (Araliaceae). Methods: Here, we estimated an anti-AD effect of pCA on activated mast cells, activated splenocytes, and a mouse model of AD. Cytokines levels were measured by ELISA and protein activation was analyzed by Western blotting. 2,4-dinitrofluorobenzene (DNFB) was used to induce AD-like skin lesions. Results: The treatment with pCA suppressed the productions and mRNA expressions of thymic stromal lymphopoietin (TSLP), TNF-α, IL-6, and IL-1β in HMC-1 cells. pCA downregulated the expressions of RIP2 and caspase-1, phosphorylated-(p)p38/pJNK/pERK, and pIKKβ/pIkBα/NF-κB in HMC-1 cells. pCA also decreased the productions of TSLP, TNF-α, IL-6, IL-4, and IFN-γ in the supernatant of stimulated splenic cells. Comparing to DNFB-sensitized control group, pCA-treated group alleviated pathological changes of AD-like lesions. pCA decreased the proteins and mRNA expressions levels of TSLP, IL-6, and IL-4 in the skin lesions. Caspase-1 activation was also downregulated by pCA treatment in the AD-like lesions. The serum levels of histamine, IgE, TSLP, TNF-α, IL-6, and IL-4 were suppressed following treatment with pCA. Conclusion: This study suggests that pCA has the potential to improve AD by suppressing TSLP as well as inflammatory cytokines via blocking of caspase-1/NF-κB signal cascade.