• Title/Summary/Keyword: shrinkage ratios

Search Result 116, Processing Time 0.025 seconds

Engineering Properties of Low Cement Mortar with type and Various Incorporating Ratios of Setting Accelerator (응결촉진제 종류 및 치환율 변화에 따른 저시멘트 모르타르의 공학적 특성)

  • Jo, Man-Ki;Han, Sang-Yoon;Cha, Cheon-Soo;Park, Yong-Kyu;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.143-144
    • /
    • 2015
  • In this research it was attempted to analyze the general engineering properties of low cement mortar according to the type of setting accelerator and substitution rate, when 1% substitution rate for setting accelerator was used a high rate of compressive strength manifestation was shown and that the WS-10 type setting accelerator was appropriate. For the rate of change of length, when 3% substitution rate for setting accelerator was used, it was shown that due to initial expansion the shrinkage compensation was not significant, and when taking into consideration strength and shrinkage, 1% of WS-10 was shown to be appropriate.

  • PDF

Evaluation of Concrete Material Properties for Pavement Using Job-site Processed Recycled Aggregates (현장재생골재를 사용한 포장용 콘크리트의 기본 물성실험)

  • Yang, Sungchul;Kim, Namho
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.

THE EFFECT OF MONOMER TO POWDER RATIO ON POLYMERIZATION SHRINKAGE-STRAIN KINETICS OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.735-742
    • /
    • 2007
  • Statement of problem. Although a number of previous investigations have been carried out on the polymerization shrinkage-strain kinetics of provisional crown and fixed partial denture (FPD) materials, the effect of the changes of liquid monomer to powder ratio on its polymerization shrinkage-strain kinetics has not been reported. Purpose. The purpose of this study was to investigate the influence of liquid monomer to powder ratio of polymer-based provisional crown and FPD materials on the polymerization shrinkage-strain kinetics. Material and methods. Chemically activated acrylic provisional materials (Alike, Jet, Snap) were investigated. Each material was mixed with different liquid monomer to powder ratios by volume (1.0:3.0, 1.0:2.5, 1.0:2.0, 1.0:1.5, 1.0:1.0). Time dependent polymerization shrinkage- strain kinetics of all materials was measured by the bonded-disk method as a function of time at $23^{\circ}C$. Five recordings were taken for each ratio. The results were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. Trends were also examined by linear regression. Results. At 5 minutes after mixing, the polymerization shrinkage-strains of all materials ranged from only 0.01% to 0.49%. At 10 minutes, the shrinkage-strain of Alike was the highest, 3.45% (liquid monomer to powder ratio=1.0:3.0). Jet and Snap were 2.69% (1.0:2.0) and 1.58% (1.0:3.0), respectively (P>0.05). Most shrinkage (94.3%-96.5%) occurred at 30 minutes after mixing for liquid monomer to powder ratio, ranging from 1.0:3.0 to 1.0:1.0. The highest polymerization shrinkage-strain values were observed for the liquid monomer to powder ratio of 1.0:3.0. At 120 minutes after mixing, the shrinkage-strain values were 4.67%, 4.18%, and 3.07% for Jet, Alike, and Snap, respectively. As the liquid monomer to powder ratio increased, the shrinkage-strain values tend to be decreased linearly (r=-0.769 for Alike, -0.717 for Jet, -0.435 for Snap, $r^2=0.592$ for Alike, 0.515 for Jet, 0.189 for Snap; P<0.05). Conclusion. The increase of the liquid monomer to powder ratio from 1.0:3.0 to 1.0:1.0 had a significant effect on the shrinkage-strain kinetics of polymer-based crown and FPD materials investigated. This increased the working time and decreased the shrinkage-strain during polymerization.

The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios (물-결합재 비와 잔골재-결합재 비에 따른 알칼리 활성화 슬래그 모르타르의 기초특성)

  • Kim, Tae-Wan;Hahm, Hyung-Gil;Lee, Seong-Haeng;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2013
  • This study investigates the fundamental properties of the water-binder (W/B) ratio and fine aggregate-binder (F/B) ratio in the alkali-activated slag cement (AASC) mortar. The W/B ratios are 0.35, 0.40, 0.45, and 0.50, respectively. And then the F/B ratios varied between 1.00 and 3.00 at a constant increment of 0.25. The alkali activator was an 2M and 4M NaOH. The measured mechanical properties were compared, flow, compressive strength, absorption, ultra sonic velocity, and dry shrinkage. The flow, compressive strength, absorption, ultra sonic velocity and dry shrinkage decreased with increases W/B ratio. The compressive strength decreases with increase F/B ratio at same W/B ratio. Also, at certain value of F/B ratio significant increase in strength is observed. And S2 (river sand 2) had lower physical properties than S1 (river sand 1) due to the fineness modulus. The results of experiments indicated that the mechanical properties of AASC depended on the W/B ratio and F/B ratio. The optimum range for W/B ratios and F/B ratios of AASC is suggested that the F/B ratios by 1.75~2.50 at each W/B ratios. Moreover, the W/(B+F) ratios between 0.13 and 0.14 had a beneficial effect on the design of AASC mortar.

POLYMERIZATION SHRINKAGE OF COMPOSITE RESINS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도 중합에 따른 복합레진의 중합수축에 관한 연구)

  • Lim, Mi-Young;Cho, Kyung-Mo;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • The purpose of this study was to compare the effect of exponential curing method with conventional curing and soft start curing method on polymerization shrinkage of composite resins. Three brands of composite resins (Synergy Duo Shade, Z250, Filtek Supreme) and three brands of light curing units (Spectrum 800, Elipar Highlight, Elipar Trilight) were used. 40 seconds curing time was given. The shrinkage was measured using linometer for 90 seconds. The effect of time on polymerization shrinkage was analysed by one-way ANOVA and the effect of curing modes and materials on polymerization shrinkage at the time of 90s were analysed by two-way ANOVA. The shrinkage ratios at the time of 20s to 90s were taken and analysed the same way. The results were as follows : 1. All the groups except Supreme shrank almost within 20s Supreme cured by soft start and exponential curing had no further shrinkage after 30s (p < 0.05). 2. Statistical analysis revealed that polymerization shrinkage varied among materials (p = 0.000) and curing modes (p = 0.003). There was no significant interaction between material and curing mode. 3. The groups cured by exponential curing showed the statistically lower polymerization shrinkage at 90s than the groups cured by conventional curing and soft start curing (p < 0.05). 4. The initial shrinkage ratios of soft start and exponential curing were statistically lower than conventional curing (p < 0.05). From this study, the use of low initial light intensities may reduce the polymerization rate and, as a result, reduce the stress of polymerization shrinkage.

The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate (혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성)

  • Kim, Tae Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • In this paper, the performance of alkali-activated slag cement (AASC) is assessed in terms of compressive strength and drying shrinkage, using three different types of silica sand and river sand. The sand type has an important influence on the properties of AASC mortar. Three silica sands (SS1, SS2 and SS3) and river sand (RS) were considered. Three series of blended sands have been tested. A first series (S1) with RS and SS1, a second series (S2) with RS and SS2 and third series (S3) with RS and SS3 with a different blended ratios. The result shows a very significant influence of the blended sand on the AASC mortar properties. The compressive strength and drying shrinkage related with the particle sizes and blended ratios of sands are investigated considering blended sand properties like fineness modulus (FM) and relative specific surface. The type and blended ratio of sand seems to have very significant and important consequences for the mix design of the AASC mortar.

Hydration of Expansive Materials with CSA-System (CSA계 팽창재료의 수화특성)

  • 정성철;송명신;이경희;한천구
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.631-637
    • /
    • 2002
  • This paper deals with hydration properties of the OPC with CSA-system expansive materials. In OPC using CSA, that was formed monosulfate for the main part. but In OPCs using CSA and gypsum, using CSA and gypsum and lime, that were formed ettringite for the main part. On the shrinkage ratio, the former is larger than the latter And CSA-system with gypsum and lime is smallest of all systems. According to dimension of shrinkage ratios are as follows; OPC using CSA only> OPC only> OPC using CSA and gypsum> OPC using CSA, gypsum and lime. And "R"s are 0.32, 0.37, 0.8, 0.8, 0.8 each others. In OPC with CSA-system expansive materials, we know that expansive properties were depend upon the value of "R". "R" means supplying quantities about demanding quantities for ettringite. In the case of expansive materials with CSA-system and lime, it is to be rich Ca(OH)$_2$ in the solution. so, it is formed small ettringite as the needle shapes. they are contribute to expansive.

An Experimental Study on the Replication Ratio of Micro Patterns considering the Thickness Change of Injection Molded Parts (사출성형품의 두께변화에 따른 마이크로 패턴의 전사율에 관한 실험적 연구)

  • Jeong, C.;Kim, J.D.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.176-179
    • /
    • 2009
  • Injection molding is one of the most general manufacturing processes of polymers. The deformation of final molded parts occurs because of the change of temperature and pressure during injection molding process. The deformation of injection molded parts depends on many operational conditions, such as, melt temperature, injection speed, mold temperature, packing pressure, and the structure of mold. In the present paper, injection molding experiments were performed to find the process conditions to affect the average shrinkage in thickness direction and the replication ratio of fine patterns on the surface for the final injection-molded LGP samples. As a results, in the cases of PC(Polycarbonate), when the melt temperature was under $285^{\circ}C$, both average shrinkage and replication ratios were mainly influenced by packing pressure. However, the replication ratio was more influenced by melt temperature than packing pressure for the cases of higher melt temperature.

  • PDF

Prediction of moments in composite frames considering cracking and time effects using neural network models

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.267-285
    • /
    • 2011
  • There can be a significant amount of moment redistribution in composite frames consisting of steel columns and composite beams, due to cracking, creep and shrinkage of concrete. Considerable amount of computational effort is required for taking into account these effects for large composite frames. A methodology has been presented in this paper for taking into account these effects. In the methodology that has been demonstrated for moderately high frames, neural network models are developed for rapid prediction of the inelastic moments (typically for 20 years, considering instantaneous cracking, and time effects, i.e., creep and shrinkage, in concrete) at a joint in a frame from the elastic moments (neglecting instantaneous cracking and time effects). The proposed models predict the inelastic moment ratios (ratio of elastic moment to inelastic moment) using eleven input parameters for interior joints and seven input parameters for exterior joints. The training and testing data sets are generated using a hybrid procedure developed by the authors. The neural network models have been validated for frames of different number of spans and storeys. The models drastically reduce the computational effort and predict the inelastic moments, with reasonable accuracy for practical purposes, from the elastic moments, that can be obtained from any of the readily available software.