• Title/Summary/Keyword: shrinkage difference

Search Result 294, Processing Time 0.027 seconds

Thermal Deformation Analysis of L-shaped Composite During Cure Process by Viscoelastic Model (점탄성을 고려한 L-형상 복합재료 성형시 열변형 해석)

  • Seong, Dong-Yun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.220-227
    • /
    • 2020
  • When curing the composite, the fibers have little thermal deformation, but the resin changes its properties with time and temperature, which leads to residual stress in the product. Residual stress is caused by the difference in the coefficient of thermal expansion of the fibers and resin during the curing process and the chemical shrinkage of the resin. This difference causes thermal deformation such as spring-in and warpage. Thermal deformation of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In this study, a subroutine was developed to predict thermal deformation by applying 3-D viscoelastic model. The finite element analysis was verified by comparing the results of the plate analysis of the 2-D viscoelastic model. Spring-in of L-shaped structure was predicted and analyzed by applying the 3-D viscoelastic model.

Consumer recognition and mechanical property comparison of wetsuit material for diving (다이빙용 웨트수트(wetsuit) 소재에 대한 소비자 인식조사와 물성 비교)

  • Sang, Jeong Seon;Oh, Kyung Wha
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.163-174
    • /
    • 2018
  • Consumer and property evaluation of wetsuit materials were conducted to obtain useful data for developing competitive products that meet consumer expectations and improving industrial competitiveness. Data were collected through online surveys of 213 domestic consumers who have experienced wearing wetsuit among marine leisure activities. Five types of commercial wet suit materials by brand and four types of commercial wet suit materials with the same quality by thickness were collected. Then, their physical properties, salt water resistance and thermal insulation rate were evaluated and compared. As a result, the most commonly used wetsuit material is 3 to 5 mm thick, and the basic jersey material is bonded on both sides. As a processing for imparting functionality, processing for improving warmth and reducing surface resistance are most frequently used. Consumers often feel uncomfortable when wearing a wetsuit, such as wearing comfort, weight, ease of movement, stretchability, and clothing pressure, which are different from those of casual wear. Also, mechanical strength and warmth were considered to be the most important criteria for selection of wetsuit material for purchase or rental. The mechanical properties of brand A and B were better than those of brand C, D, and E. Resilience and thermal shrinkage were better in brand C, D, and E. On the other hand, there was no significant difference in the physical properties due to the difference in thickness of the material at the same quality. Also, it was found that the thicker the material, the more stable it is in the heat. Brand A and B had superior salt water resistance than brand C, D, and E. In the thermal insulation test, brand A and B showed better insulation characteristics than brand C, D, and E, but the types of bonded fabric and surface finishing of materials were thought to have affected. In comparison of the thickness, the thicker the materials, the better the salt resistance and the thermal insulation.

Modified-stoichiometric Model for Describing Hydration of Alkali-Activated Slag (알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델)

  • Abate, Selamu Yihune;Park, Solmoi;Song, Keum-Il;Lee, Bang-Yeon;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The present study proposes the modified-stoichiometric model for describing hydration of sodium silicate-based alkaliactivated slag(AAS), and compares the results with the thermodynamic modelling-based calculations. The proposed model is based on Chen and Brouwers(2007a) model with updated database as reported in recent studies. In addition, the calculated results for AAS are compared to those for hydrated portland cement. The maximum difference between the proposed model and the thermodynamic calculation for AAS was at most 20%, and the effects of water-to-binder ratio and activator dosages were identically described by both approaches. In particular, the amount of non-evaporable water was within 10% difference, and was in excellent agreement with the experimental results. Nevertheless, notable deviation was observed for the chemical shrinkage, which is largely dependent on the volume of hydrates and pores.

Evaluation of Growth and Wood Traits in E. camaldulensis and Interspecific Eucalypt Hybrid Clones Raised at Three Diverse Sites in Southern India

  • Rathinam Kamalakannan;Suraj Poreyana Ganapathy;Shri Ram Shukla;Mohan Varghese;Chandramana Easwaran Namboothiri Jayasree
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Twenty-five Eucalyptus clones (14 E. camaldulensis - EC and 11 interspecific eucalypt hybrid clones - EH) grown in three contrasting sites were evaluated for the growth and few wood traits at 4 years of age. The stability, genotype-site interaction and suitability of these clones for pulp and solid wood industry sectors were studied. Growth of eucalypt clones was significantly higher at site 1 with higher rainfall, but wood density did not differ significantly from lower rainfall sites. Kraft pulp yield (KPY) decreased from sites 1 to 3 based on moisture availability, but not between two groups of clones. Volumetric shrinkage (VS) was significantly higher in EC clones at site 3 with lowest rainfall, but there was no specific trend at other two sites with maximum (site 1) and intermediate (site 2) rainfall. The mechanical traits modulus of rupture (MOR) and modulus of elasticity (MOE) were at par in sites 1 and 2, but significantly lower at the driest site 3. The growth rate had a significant positive correlation with KPY, MOR and MOE and a negative correlation with VS, but no significant impact on wood density in both groups of clones. Genotype×environment interaction (G×E) was evident in most traits due to the difference in response of clones to moisture availability. Since wood density was negatively correlated to KPY, it has to be kept at an optimum level for the profitability of pulp industry. There was no significant difference between EC and EH clones for most traits except VS at site 3. Stability of clones varied across sites in different traits, and hence clones may be selected for deployment at each site by screening for growth, followed by wood density, considering the relationship of growth and density with other traits required by pulp and solid wood industry sectors.

THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD (무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성)

  • Whang, Seung-Woo;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF

Effect of Leaf Maturity on Physico -chemical Properties of Leaf Tobacco (담배 잎의 성숙도에 따른 이화학적 특성)

  • 이철환;진정의;한철수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.200-206
    • /
    • 1996
  • Experiment was conducted to get the information about physico-chemical properties of flue-cured tobacco on the degree of maturity cultivated in paddy-upland rotated field, and compared to upland ones. For the samples of this experiment, 3~4 leaves at each stalk position were harvested from the bottom of plants. Physico-chemical properties of cured leaves were determined from the samples collected at weekly intervals, and of obtained from 4 stalk positions. For the degree of maturity, harvested leaves were separated with visual characters into four classes such as immature, mature, ripe, and mellow. Regardless of stalk position, the order of shrinkage rate with length and width of leaves was mellow> immature> ripe> mature, and ripe leaves from paddy field showed higher shrinkage rate than those of upland. Nicotine and total nitrogen contents were decreased with the degree of maturity while reducing sugar content were showed a reverse tendency. Ripe leaves from paddy field had lower reducing sugar contents, comparing with upland tobacco. Filling capacity of cured leaves from paddy field was decreased with degree of maturity, but there was no difference between upland and paddy tobacco. Shatter index was increased in the oeder of immature > mellow > mature > ripe. Chemical components of cigarette smoke from paddy field tobacco were little higher in $CO_2$ total particulate matter and tar contents, while combustibility was little lower than that of upland tobacco. It was also evaluated that paddy field tobacco was unfavorable for the non-volatile organic and higher fatty acids contents comparing with upland tobacco.

  • PDF

Difference in Contents of Chemical Components in Radix of Paeonia lactiflora Pall. with Root Diameters (작약(芍藥)의 뿌리굵기에 따른 성분함량(成分含量) 차이(差異))

  • Kang, Kwang-Hee;Choung, Myoung-Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.2
    • /
    • pp.149-153
    • /
    • 1994
  • This experiment was conducted to know the relationship between root diameter and the contents of paeoniflorin and some Chemical components in Paeoniae radix. Paeoniae radix of Euisung cultivar was harvested on 17 June, 1993 and divided into four gorups according to root diameter such as $30{\pm}2mm,\;17{\pm}1mm,\;12{\pm}1mm\;and\;7{\pm}1mm$. Paeoniflorin, total sugars, starch, crude protein, crude fat and crude ash of them were analyzed after dryed them for 30 days in room temperature. The ratio of shrinkage with different root diameter were not different significantly, and the average ratio of them was about 30%. Contents of paeoniflorin of $17{\pm}1mm$ root diameter was lower than that of $7{\pm}1mm$. but contents of total sugar and starch of $17{\pm}1mm$ were higher than those of $7{\pm}1mm$. Paeoniflorin contents was positively correlated with crude protein and crude fiber, and crude protein contents was negatively correlated with total sugars and starch.

  • PDF

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.

Development of Carbonization Technology and Application of Unutilized Wood Wastes(I) -Carbonization and It's Properties of Thinned Trees- (미이용 목질폐잔재의 탄화 이용개발(I) -수종의 간벌재 탄화와 탄화물의 특성-)

  • Kim, Byung-Ro;Kong, Seog-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • Objective of this research is to obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(thinned trees) are analyzed. Proximate analysis shows the thinned wood contains 0.22-0.73% ash, 77-80% volatile matter, and 10-14% fixed carbon. The charcoal yield decreases and the shrinkage rate increases as the carbonization temperature and time increase. The charcoal yields of Larix leptolepis, Pinus rigida and Pinus densiflora are high, whereas those of Pinus koraiensis and Quercus variabilis are low. The shrinkage rate by carbonization has same trend as water removal of wood. The specific gravity after the carbonization decreases about 50% comparing to green wood. The charcoal has 0.89-4.08% ash, 6.31-13.79% volatile matter, and 73.9-83.5% fixed carbon. As the carbonization temperature and time increase, pH of charcoal increases. When the carbonization temperature is $400^{\circ}C$, pH is about 7.5. When the temperature is between 600 to $800^{\circ}C$, pH is about 10 with small difference. The water-retention capacity is not affected by the carbonization temperature and time. The water-retention capacity within 24hr is about 2.5 - 3times of sample weight, and the equivalent moisture content becomes 2-10% after 24 hr.

  • PDF

Mock-up Test of Improved Concrete Binders for Lightweight Foamed concrete (경량기포 콘크리트용 개량분체의 Mock-up 실험평가)

  • Choi, Sung-Yong;Jeong, Kwang-Bok;Kim, Gi-Cheol;Kim, Seong-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.853-856
    • /
    • 2008
  • Lightweight foamed concretes are mainly used in apartment building construction for building room floor insulation, sound proof and height difference adjustment, etc. However, existing lightweight foamed concretes have problems like volume reduction by foam removal and excessive crack occurrence, etc, and for compensation, they developed improved concrete binders for lightweight foamed concrete with special characteristics by adding admixture materials used in concrete manufacturing. Therefore, this study reviewed the possibility of its practical use by analyzing all the engineering characteristics after producing imitation member proposed as actual binders and piling lightweight foamed concrete as improved lightweight foamed concrete binder through prior study, the results are as follows. Plain in which various pulverulent materials are mixed showed about 230mm of flow value, satisfying the target flow value, and at 100mm member, about 4mm of settlement occurred, showing a settlement depth reduction effect double the OPC. On strength, OPC showed highest value, but the three levels all showed strengths above the specified value of KS standard 0.5 grade. From the analysis of drying shrinkage member crack, plain, about 0.1mm, was shown very excellent against drying shrinkage crack.

  • PDF