DOI QR코드

DOI QR Code

Evaluation of Growth and Wood Traits in E. camaldulensis and Interspecific Eucalypt Hybrid Clones Raised at Three Diverse Sites in Southern India

  • Received : 2022.10.27
  • Accepted : 2023.02.23
  • Published : 2023.03.31

Abstract

Twenty-five Eucalyptus clones (14 E. camaldulensis - EC and 11 interspecific eucalypt hybrid clones - EH) grown in three contrasting sites were evaluated for the growth and few wood traits at 4 years of age. The stability, genotype-site interaction and suitability of these clones for pulp and solid wood industry sectors were studied. Growth of eucalypt clones was significantly higher at site 1 with higher rainfall, but wood density did not differ significantly from lower rainfall sites. Kraft pulp yield (KPY) decreased from sites 1 to 3 based on moisture availability, but not between two groups of clones. Volumetric shrinkage (VS) was significantly higher in EC clones at site 3 with lowest rainfall, but there was no specific trend at other two sites with maximum (site 1) and intermediate (site 2) rainfall. The mechanical traits modulus of rupture (MOR) and modulus of elasticity (MOE) were at par in sites 1 and 2, but significantly lower at the driest site 3. The growth rate had a significant positive correlation with KPY, MOR and MOE and a negative correlation with VS, but no significant impact on wood density in both groups of clones. Genotype×environment interaction (G×E) was evident in most traits due to the difference in response of clones to moisture availability. Since wood density was negatively correlated to KPY, it has to be kept at an optimum level for the profitability of pulp industry. There was no significant difference between EC and EH clones for most traits except VS at site 3. Stability of clones varied across sites in different traits, and hence clones may be selected for deployment at each site by screening for growth, followed by wood density, considering the relationship of growth and density with other traits required by pulp and solid wood industry sectors.

Keywords

Acknowledgement

One of the authors (SRS) is thankful to the Director, Institute of Wood Science and Technology (IWST), Bengaluru for his keen interest in this work.

References

  1. Andrade CR, Trugilho PF, Napoli A, Vieira RS, Lima JT, Sousa LC. 2010. Estimation of the mechanical properties of wood from Eucalyptus urophylla using near infrared spectroscopy. Cerne 16: 291-298. https://doi.org/10.1590/S0104-77602010000300005
  2. Assis TF. 2000. Production and use of Eucalyptus hybrids for industrial purposes. In: Hybrid Breeding and Genetics of Forest Trees: Proceedings of QFRI/CRC-SPF Symposium; Noosa, Australia; April 9-14, 2000. pp 63-74.
  3. Carvalho AM, Lahr FAR, Bortoletto G. 2004. Use of Brazilian Eucalyptus to produce LVL panels. For Prod J 54: 61-64.
  4. Chaix G, Denis M, Polidori J, Vigneron P, Makouanzi G, Diombokho A, Nourissier S, Bouvet JM. 2011. Genotype x environment interactions for growth and wood traits for eucalyptus hybrids. In: Proceedings Improvement and Culture of Eucalypts; Porto Seguro, Brazil; November 14-18, 2011. pp 175-178.
  5. Chen S, Weng Q, Li F, Li M, Zhou C, Gan S. 2018. Genetic parameters for growth and wood chemical properties in Eucalyptus urophylla × E. tereticornis hybrids. Ann For Sci 75: 16.
  6. de Mendiburu F. 2019. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. https://CRAN. R-project.org/package=agricolae. Accessed 1 Nov 2022.
  7. Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion JM, Nourrisier-Mountou S, Polidori J, Bouvet JM. 2013. Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genet Genomes 9: 927-942. https://doi.org/10.1007/s11295-013-0606-z
  8. Downes GM, Worledge D, Schimleck L, Harwood C, French J, Beadle C. 2006. The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens. NZ J For 51: 13-22.
  9. Drew DM, Bruce J, Downes GM. 2017. Future wood properties in Australian forests: effects of temperature, rainfall and elevated CO2. Aust For 80: 242-254. https://doi.org/10.1080/00049158.2017.1362937
  10. Finlay KW, Wilkinson GN. 1963. The analysis of adaptation in a plant breeding program. Aust J Agric Res 14: 742-754. https://doi.org/10.1071/AR9630742
  11. Gardner RAW, Little KM, Arbuthnot A. 2007. Wood and fibre productivity potential of promising new eucalypt species for coastal Zululand, South Africa. Aust For 70: 37-47. https://doi.org/10.1080/00049158.2007.10676261
  12. Goncalves JLDM, Stape JL, Laclau JP, Smethurst P, Gava JL. 2004. Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manag 193: 45-61. https://doi.org/10.1016/j.foreco.2004.01.022
  13. Greaves BL, Borralho NMG, Raymond CA. 1997. Raymond, Breeding Objective for Plantation Eucalypts Grown for Production of Kraft Pulp. For Sci 43: 465-472.
  14. Hamilton MG, Raymond CA, Harwood CE, Potts BM. 2009. Genetic variation in Eucalyptus nitens pulpwood and wood shrinkage traits. Tree Genet Genomes 5: 307-316. https://doi.org/10.1007/s11295-008-0179-4
  15. Hanson WD. 1970. Genotypic stability. Theor Appl Genet 40: 226-231. https://doi.org/10.1007/BF00285245
  16. Hein PRG, Brancheriau L, Lima JT, Rosado AM, Gril J, Chaix G. 2010. Clonal and environmental variation of structural timbers of Eucalyptus for growth, density, and dynamic properties. Cerne 16: 74-81.
  17. Kamala BS, Kumar P, Sudheendra R. 1995. Assessment of strength properties of 10-year-old Eucalyptus camaldulensis. J Indian Acad Wood Sci 26-27: 71-75.
  18. Kothiyal V, Sudheendra R, Rao RV. 2006. Assessment of Some Strength Properties of Certain Clones Eucalyptus tereticornis SM. from Sarapakka, Andhra Pradesh. Indian For 132: 1102-1109.
  19. Lee DJ, Nikles DG, Dickinson GR. 2001. Prospects of eucalypt species, including interspecific hybrids from South Africa, for hardwood plantations in marginal subtropical environments in Queensland, Australia. South Afr For J 190: 89-94. https://doi.org/10.1080/20702620.2001.10434120
  20. Lima J, Breese M, Cahalan C. 2000. Genotype-environment interaction in wood basic density of Eucalyptus clones. Wood Sci Technol 34: 197-206. https://doi.org/10.1007/s002260000041
  21. Listyanto T, Nichols JD, Glencross K, Schoer L. 2020. Variation in density and shrinkage of six Eucalyptus species and interspecific hybrid combinations at three sites in Northern New South Wales. IOP Conf Ser Mater Sci Eng 935: 012035.
  22. Lundqvist S, Grahn T, Olsson L, Seifert T. 2017. Comparison of wood, fibre and vessel properties of drought-tolerant eucalypts in South Africa. South For 79: 215-225. https://doi.org/10.2989/20702620.2016.1254910
  23. Luo J, Arnold R, Cao J, Lu W, Ren S, Xie Y, Xu L. 2012. Variation in pulp wood traits between eucalypt clones across sites and implications for deployment strategies. J Trop For Sci 24: 70-82.
  24. Madhibha T, Murepa R, Musokonyi C, Gapare W. 2013. Genetic parameter estimates for interspecific Eucalyptus hybrids and implications for hybrid breeding strategy. New For 44: 63-84. https://doi.org/10.1007/s11056-011-9302-8
  25. Malan FS, Verryn SD. 1996. Effect of Genotype-by-Environment Interaction on the Wood Properties and Qualities of Four-year-old Eucalyptus grandis and E. grandis Hybrids. South Afr For J 176: 47-53. https://doi.org/10.1080/00382167.1996.9629709
  26. Marchesan R, Oliveira DN, Silva RC, Carvalho LA, Gomes RT, Almeida VC. 2020. Quality of charcoal from three species of the Eucalyptus and the Corymbia citriodora species planted in the south of Tocantins. Floresta 50: 1643-1652. https://doi.org/10.5380/rf.v50i3.65303
  27. Marco de Lima B, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D. 2019. Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS One 14: e0218747.
  28. Muneri A, Daido T, Henson M, Johnson I. 2007. Variation in pulpwood quality of superior Eucalyptus dunnii families grown in NSW. Appita J 60: 74-77.
  29. Muneri A, Raymond CA. 2000. Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus. For Genet 7: 321-332.
  30. Oliveira RS, Ribeiro CVG, Neres DF, Porto ACM, Ribeiro D, Siqueira L, Zauza EAV, Coelho ASG, Reis CAF, Alfenas AC, Novaes E. 2020. Evaluation of genetic parameters and clonal selection of Eucalyptus in the Cerrado region. Crop Breed Appl Biotechnol 20: e29982031.
  31. Oliveira TWG, Paula RC, Moraes MLT, Alvares CA, Miranda AC, Silva PHM. 2018. Stability and adaptability for wood volume in the selection of Eucalyptus saligna in three environments. Pesq Agropec Bras 53: 611-619. https://doi.org/10.1590/s0100-204x2018000500010
  32. Prasetyo A, Aiso H, Ishiguri F, Wahyudi I, Wijaya IPG, Ohshima J, Yokota S. 2017. Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. Tropics 26: 59-69. https://doi.org/10.3759/tropics.MS16-15
  33. Prasetyo A, Aiso-Sanada H, Ishiguri F, Wahyudi I, Wijaya IPG, Ohshima J, Yokota S. 2018. Growth Characteristics and Wood Properties of Two Interspecific Eucalyptus Hybrids Developed in Indonesia. For Prod J 68: 436-444. https://doi.org/10.13073/FPJ-D-17-00049
  34. Pupin S, Silva PHM, Piotto FA, Miranda AC, Zaruma DUG, Sebbenn AM, Moraes MLT. 2018. Genotype x Environment interaction, stability, and adaptability in progenies of Eucalyptus urophylla S.T. BLAKE using the AMMI model. Silvae Genet 67: 51-56.
  35. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. Accessed 1 Nov 2022.
  36. Ramadevi P, Hegde DV, Kamalakannan R, Varghese M. 2018. Pulp wood traits of Eucalyptus camaldulensis clones across three contrasting locations in southern India. J Indian Acad Wood Sci 15: 158-161. https://doi.org/10.1007/s13196-018-0221-6
  37. Ramadevi P, Meder R, Varghese M. 2010. Rapid estimation of kraft pulp yield and lignin in Eucalyptus camaldulensis and Leucaena leucocephala by diffuse reflectance near-infrared spectroscopy (NIRS). South For 72: 107-111. https://doi.org/10.2989/20702620.2010.507462
  38. Raymond CA. 2002. Genetics of Eucalyptus wood properties. Ann For Sci 59: 525-531. https://doi.org/10.1051/forest:2002037
  39. Razafimahatratra AR, Ramananantoandro T, Razafimaharo V, Chaix G. 2016. Provenance and progeny performances and genotype×environment interactions of Eucalyptus robusta grown in Madagascar. Tree Genet Genomes 12: 38.
  40. Rezende GDSP, de Resende MDV, de Assis TF. 2014. Eucalyptus Breeding for Clonal Forestry. In: Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81 (Fenning T, ed). Springer, Dordrecht, pp 393-424.
  41. Rezende GDSP, Lima JL, Dias DC, Lima BM, Aguiar AM, Bertolucci FLG, Ramalho MAP. 2019. Clonal composites: an alternative to improve the sustainability of production in eucalypt forests. For Ecol Manag 449: 117445.
  42. Rubilar R, Hubbard R, Emhart V, Mardones O, Quiroga JJ, Medina A, Valenzuela H, Espinoza J, Burgos Y, Bozo D. 2020. Climate and water availability impacts on early growth and growth efficiency of Eucalyptus genotypes: the importance of GxE interactions. For Ecol Manag 458: 117763.
  43. Sharma SK, Rao RV, Shukla SR, Kumar P, Sudheendra R, Sujatha M, Dubey YM. 2005. Wood Quality of Coppiced Eucalyptus tereticornis for Value Addition. IAWA J 26: 137-147. https://doi.org/10.1163/22941932-90001608
  44. Shukla NK, Rajput SS. 1983. Physical and mechanical properties of eucalypts grown in India. Indian For 109: 933-943.
  45. Shukla SR, Kamalakannan R, Suraj PG, Vargese M, Jayasree CE. 2022. Evaluation of Growth and Wood Traits in Seven-Year-Old Eucalyptus and Corymbia Species in Southern India. Indian For 148: 1-7. https://doi.org/10.36808/if/2022/v148i2/155773
  46. Souza TS, Lima BM, Lima JL, Aguiar AM, Dias DC, Rezende GDSP, Ramalho MAP. 2020. Selection of eucalypt clones with higher stability in pulp yield. Rev Arvore 44: e4403.
  47. Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM. 2011. Genetic variation in the chemical components of Eucalyptus globulus wood. G3 (Bethesda) 1: 151-159. https://doi.org/10.1534/g3.111.000372
  48. Talgatti M, Silveira AG da, Santini EJ, Gorski L, Baldin T, Valcorte G. 2018. Physical and mechanical properties of eucalyptus wood clones. Sci Agrar Parana 17: 434-442.
  49. Varghese M, Harwood CE, Bush DJ, Baltunis B, Kamalakannan R, Suraj PG, Hegde D, Meder R. 2017. Growth and wood properties of natural provenances, local seed sources and clones of Eucalyptus camaldulensis in southern India: implications for breeding and deployment. New For 48: 67-82. https://doi.org/10.1007/s11056-016-9556-2
  50. Varghese M, Harwood CE, Hegde R, Ravi N. 2008. Evaluation of Provenances of Eucalyptus camaldulensis and Clones of E. camaldulensis and E. tereticornis at Contrasting Sites in Southern India. Silvae Genet 57: 170-179. https://doi.org/10.1515/sg-2008-0026
  51. Weng Q, He X, Li F, Li M, Yu X, Shi J, Gan S. 2014. Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments. Silvae Genet 63: 15-23. https://doi.org/10.1515/sg-2014-0003
  52. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer, Cham.
  53. Wimmer R, Downes GM, Evans R, Rasmussen G, French J. 2002. Direct Effects of Wood Characteristics on Pulp and Handsheet Properties of Eucalyptus globulus. Holzforschung 56: 244-252. https://doi.org/10.1515/HF.2002.040
  54. Wu S, Xu J, Li G, Risto V, Du Z, Lu Z, Li B, Wang W. 2011. Genotypic variation in wood properties and growth traits of Eucalyptus hybrid clones in southern China. New For 42: 35-50. https://doi.org/10.1007/s11056-010-9235-7
  55. Wu YQ, Hayashi K, Liu Y, Cai Y, Sugimori M. 2006. Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China. J Wood Sci 52: 187-194. https://doi.org/10.1007/s10086-005-0751-6
  56. Yang JL, Fife D, Ilic J, Blackwell P. 2002. Between-site and between-provenance differences in shrinkage properties of 10-year-old Eucalyptus globulus Labill. Aust For 65: 220-226. https://doi.org/10.1080/00049158.2002.10674873