• Title/Summary/Keyword: shoreline movement

Search Result 22, Processing Time 0.021 seconds

Time-series Change in Gyeongpo Beach Shoreline in 2009 and 2010 (2009-2010년 경포 해수욕장 해안선의 시계열 변화)

  • Lee, Chung-Il;Han, Moon-Hee;Jung, Hae-Kun;Kim, Sang-Woo;Kwon, Ki-Young;Jeong, Hee-Dong;Kim, Dong-Sun;Park, Sung-Eun
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1425-1435
    • /
    • 2011
  • Time-series change in Gyeongpo beach shoreline was illustrated using DGPS(Differential Global Positioning System, resolution < 0.6m) observation from April, 2009 to April, 2010. The shoreline was subdivided into 12 areas, and westward and eastward movement of shoreline position at each area was calculated. In general, the shoreline moved toward sea during summer, and it moved toward land during winter. The southern and northern part of the shoreline had different pattern in time-series. The shoreline in the southern part moved toward sea during summer and moved toward land during winter, but time-series pattern of the shoreline in the northern part was more complicated than that in the southern part. Pattern of time-series change in the northern part was made up of three different types; the first is that the shoreline moves continuously toward land, and the second thing is that the shoreline's movement is the opposite to the southern part, and the third thing is that the shoreline maintains a state of equilibrium without any great fluctuation. The total length of the shoreline was the largest during winter and the smallest during summer. In general, time-series change in the shoreline had positive(+) relationship with sea surface pressure and wind speed.

Estimation of Maximum Inundation Zone due to Tsunamis with Moving Boundary (이동경계를 이용한 지진해일의 최대범람구역 추산)

  • 조용식;서승원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.100-108
    • /
    • 2001
  • Along the shoreline a special treatment is required to simulate movement of periodic waves such as tsunami and tide because of continuous movement of shoreline as waves rise and recede. A moving boundary treatment is first proposed to track the movement of shoreline in this study. The treatment is then employed to obtain a maximum inundation area to be used for mitigation of coastal flooding. The obtained maximum inundation zone for a specific location is compared to that of available observed data. A reasonable agreement is observed.

  • PDF

Shoreline-change Rates of the Barrier Islands in Nakdong River Estuary Using Aerial Photography and SPOT-5 Image (항공사진과 SPOT-5 위성영상을 이용한 낙동강 하구역 울타리섬들의 해안선 변화율)

  • Jeong, Sang-Hun;Khim, Boo-Keun;Kim, Beack-Oon;Lee, Sang-Ryong
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Shoreline data of the barrier islands in Nakdong River Estuary for the last three decades were assembled using six sets of aerial photographs and seven sets of satellite images. Canny Algorithm was applied to untreated data in order to obtain a wet-dry boundary as a proxy shoreline. Digital Shoreline Analysis System (DSAS 4.0) was used to estimate the rate of shoreline changes in terms of five statistical variables; SCE (Shoreline Change Envelope), NSM (Net Shoreline Movement), EPR(End Point Rate), LRR (Linear Regression Rate), and LMS (Least Median of Squares). The shoreline in Jinwoodo varied differently from one place to another during the last three decades; the west tail has advanced (i.e., seaward or southward), the west part has regressed, the south part has advanced, and the east part has regressed. After the 2000s, the rate of shoreline changes (-2.5~6.7 m/yr) increased and the east advanced. The shoreline in Shinjado shows a counterclockwise movement; the west part has advanced, but the east part has retreated. Since Shinjado was built in its present form, the west part became stable, but the east part has regressed faster. The rate of shoreline changes (-16.0~12.0 m/yr) in Shinjado is greater than that of Jinwoodo. The shoreline in Doyodeung has advanced at a rate of 31.5 m/yr. Since Doyodeung was built in its present form, the south part has regressed at the rate of -18.2 m/yr, but the east and west parts have advanced at the rate of 13.5~14.3 m/yr. Based on Digital Shoreline Analysis, shoreline changes in the barrier islands in the Nakdong River Estuary have varied both temporally and spatially, although the exact reason for the shoreline changes requires more investigation.

Shoreline Changes due to the Construction of Offshore Structure and its Numerical Calculation (이안 구조물 건설에 따른 해안선의 변화와 수치계산)

  • 신승호
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.

  • PDF

A Practical Algorithm to Simulate Erosion of On-Shore Zone (실용적 해안선 후퇴 반영 알고리즘)

  • Kim, Hyoseob;Lee, Jungsu;Jin, Jae-Youll;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • An algorithm to allow shoreline movement during numerical experiment on sediment transport, deposition or resuspension for general coastal morphology is proposed here. The bed slope near shoreline, i.e. mean sea level, is influenced by bed material, tidal current, waves, and wave-induced current, but has been reported to remain within a stable range. Its annual variation is not large, either. The algorithm is adjusting the bathymetry, if the largest bed slope within shoreline band exceeds a given bed slope due to continuous erosion at zones below the shoreline. This algorithm automatically describes retreat of shoreline caused by erosion, when used within a numerical system. The algorithm was tested to a situation which includes a continuous dredging at a point, and showed satisfactory development of concentric circle contours. Next, the algorithm was tested to another situation which includes sinking of eroded part of bed plate, and produced satisfactory results, too. Finally, the algorithm was tested to a movable-bed laboratory experimental conditions. The shoreline movement behind detached breakwater was reasonably reproduced with this algorithm.

The Analysis of Eulsukdo Shoreline Change Using Multi-temporal Aerial Photo And DSAS Program (다시기 항공사진과 DSAS 기법을 이용한 을숙도 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;Park, Sung Bae;Park, Chi Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Eulsukdo located in the Nakdong Estuary plays important role in ecosystem and coastal wetland. There have been various changes in Eulsukdo up to now. Recently, we expect a great change of the western part of shoreline in Eulsukdo due to the floodgate construction but there is few databases. In this study, shorelines were digitized after we had produced the ortho-images by using aerial photos taken for 30 years(8 times). SCE, NSM and EPR were analysed by DSAS 4.2 program using vector data. In addition, the changes of shoreline were analysed in October 2011 from before Eulsukdo water gate construction to now by adding field surveying with VRS. The amount of years shoreline change is -0.34m/yr in 2009(before water gate construction) and -0.50m/yr in 2011(during the water gate construction), and the change trend shows an accumulation aspect.

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Abnormal Change in Gyeongpo Beach Shoreline in June 2012 (2012년 6월 경포해변 해안선의 이상 변화)

  • Lee, Chung Il;Jung, Hae Kun;Han, Moon Hee;Lee, Jun-Hyung;Kim, Kyung-Ryul
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1287-1295
    • /
    • 2012
  • Abnormal change in Gyeongpo beach shoreline in June of 2012 was illustrated using DGPS (Differential Global Positioning System, resolution < 0.6m) observation and drift experiment. Abrupt change in the shoreline was occurred in the latter part of June, 2012, this change was compared with that in June from 2009 to 2011. In the northern part of the beach, sand accumulated and it made beach extension and movement of the shoreline towards sea compared with that in June from 2009 to 2011. While on the other, in the southern part, the beach was eroded and it formed a steep slope around the southernmost of the beach. The shoreline in the southern part of the beach was shifted more towards land than that in the past. Change in the position of shoreline was higher in the northernmost and southernmost of the beach compared with those in the other parts. Drift in the southern part of the beach moved faster along the beach than that in the northern part of it.

Analysis of Shoreline Changes from Aerial Photographs at Oregon Inlet Terminal Groin (Oregon 하구에 위치한 방사제 주위에서의 항공사진을 이용한 해안선 변화해석)

  • Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.155-164
    • /
    • 1997
  • A comprehensive and systematic field monitoring program was initiated since October 1989, in order to investigate the temporal and spatial variation of shoreline position at northern part of Pea Island, North Carolina. Aerial photographs were taken every two months on the shoreline extending from the US Coast Guard Station at the northern end of Pea Island to a point 6 miles to the south. Aerial photographs taken were digitized initially to obtain the shoreline position data. in which a wet-dry line visible on the beach was used to identify the position of shoreline. Since the wet-dry line does not represent the “true" shoreline .position but includes the errors due to the variations of wave run-up heights and tidal elevations at the time the photos taken, it is required to eliminate the tide and wave runup effects from the initially digitized shoreline .position data. Runup heights on the beach and tidal elevations at the time the aerial photographs taken were estimated using tide data collected at the end of the FRF pier and wave data measured from wave-rider gage installed at 4 km offshore, respectively A runup formula by Hunt (1957) was used to compute the run-up heights on the beach from the given deepwater wave conditions. With shoreline position data corrected for .wave runup and tide, both spatial and temporal variations of the shoreline positions for the monitoring shoreline were analyzed by examining local differences in shoreline movement and their time dependent variability. Six years data of one-mile-average shoreline indicated that there was an apparent seasonal variation of shoreline, that is, progradation of shoreline at summer (August) and recession at winter (February) at Pea Island. which was unclear with the uncorrected shoreline position data. Determination of shoreline position from aerial photograph, without regard to the effects of wave runup and tide, can lead to mis-interpretation for the temporal and spatial variation of shoreline changes.nges.

  • PDF

Monitoring System of Sandbar Variation of Estuary using Video-based Technique (비디오를 이용한 하구 사주 변화 모니터링 시스템(I) - Hardware System 구축을 중심으로 -)

  • Yoon, Han-Sam;Ryu, Seung-Woo;Kang, Tae-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.630-636
    • /
    • 2008
  • Monitoring the location of the shoreline and foreshore changes through the time and core tasks are carried out by coastal engineers for a wide range of research. With the advent of digital imaging technology, the shore-based video monitoring system provides many advantages than field surveys. This study presents the development and construction(installation) of video monitoring system to assist the study of coastal and shoreline dynamics and evolution, especially sandbar variation at the Nakdong river estuary. For the purpose of this study, at high building near the Dadea-po beach (St. 2) and Jinudo(island) (St. 1) foreshore region, where coastline variation is highly active, 5 video cameras installed; the coastline movement has monitored since Aug. 2007 using the systems. From the image results of video camera, the 'Spit' type sandbar appears at the foreshore region of Doyodeung and Dadea-po beach and measured the deposition process of Jinudo(island) foreshore region. As a result, the monitoring system using video-based technique built in this study would be able to identify changes in the area and width of shoreline and beach of Nakdong river estuary.