• Title/Summary/Keyword: shock proteins

Search Result 372, Processing Time 0.025 seconds

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Synthesis and thermotolerance of heat shock proteins in campylobacter jejuni (Campylobacter jejuni에서 고온충격 단백질의 합성과 내열성)

  • 김치경;김현옥;이길재
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 1991
  • The heat shock responses of Campylobacter jejuni were studied by examination of their survival rates and synthesis of heat shocd proteins. When C. jejuni cells were treated at the sublethal temperatures of 48.deg.C for 30 minutes, most of the cells maintained their viabilities and synthesized the heat shock proteins of 90, 73, and 66 kD in molecular weight. By the method of two-dimensional electrophoresis, the heat shock proteins of C. jejuni were identified to be Hsp90, Hsp73, and Hsp66. During the heat shock at 48.deg.C, the heat shock proteins were induced from about 5 minutes after the heat shock treatment. Their synthesis was continued upto 30 minutes, but remarkably retarded after 50 minutes. When C. jejune cells were heat shocked at 51.deg.C for 30 minutes, the survival rates of the cells were decreased by about $10^{3}$ fold and synthesis of heat shock proteins and normal proteins was also generally retarded. The cells exposed to 55.deg.C for 30 minutes died off by more than $10^{5}$ cells and the new protein synthesis was not observed. But when C. jejuni cells were heat-shocked at the sublethal temperature of 48.deg.C for 15 to 20 minutes and then were exposed at the lethal temperature of 55.deg.C for 30 minutes, their viabilities were higher than those exposed at 55.deg.C for 30 minutes without pre-heat shock at 48.deg.C. Therefore, the heat shock proteins synthesized at the sublethal temperature of 48.deg.C in C. jejuni were thought to be responsible for thermotolerance. However, when C. jejuni cells heat-shocked at various ranges of sublethal and lethal temperatures were placed back to the optimum temperature of 42.deg.C, the multiplication patterns of the cells pretreated at different temperatures were not much different each other.

  • PDF

Stress-shock Response of a Methylotrophic Bacterium Methylovorus sp. strain SSl DSM 11726

  • Park, Jong H.;Kim, Si W.;Kim, Eungbin;Young T. Ro;Kim, Young M.
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.162-167
    • /
    • 2001
  • Methylovorus sp. strain SS1 DSM 11726 was found to grow continuously when it was transferred from 30$\^{C}$ to 40$\^{C}$ and 43$\^{C}$. A shift in growth temperature from 30$\^{C}$ to 45$\^{C}$, 47$\^{C}$ and 50$\^{C}$ reduced the viability of the cell population by more than 10$^2$, 10$^3$and 10$\^$5/ folds, respectively, after 1h cultivation. Cells transferred to 47$\^{C}$ and 50$\^{C}$ after preincubation for 15 min at 43$\^{C}$, however, exhibited 10-fold increase in viability. It was found that incubation for 15 min at 40$\^{C}$ of Methylovorus sp. strain SSl grown at 30$\^{C}$ was sufficient to accelerate the synthesis of a specific subset of proteins. The major heat shock proteins had apparent molecular masses of 90, 70, 66, 60, and 58 kDA. The 60 and 58 kDa proteins were found to cross-react with the antiserum raised against GroEL protein. The heat shock response persisted for over 1h. The shock proteins were stable for 90 min in the cell. Exposure of the cells to methanol induced proteins identical to the heat shock proteins. Addition of ethanol induced a unique protein with a molecular mass of about 40 kDa in addition to the heat-induced proteins. The proteins induced in paraquat-treated cells were different from the heat shock proteins, except the 70 and 60 kDa proteins.

  • PDF

Expression of the Heat Shock Proteins in HeLa and Fish CHSE-214 Cells Exposed to Heat Shock (어류 CHSE-214와 인간 HeLa 세포에서의 열충격에 의한 Heat Shock Protein의 발현)

  • 공회정;강호성김한도
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.123-131
    • /
    • 1996
  • In this study, we examined the expression of heat shock proteins (HSPs) in fish cell line CHSE-2lnl and human HeLa cells exposed to heat shock. In fish CHSE-214 cells HSP70 was the major polvpeptide induced by an elevated temperature or an amino acid analog, while in HeLa cells HSP90 as well as HSP70 were prominently enhanced in response to these stresses. Pretreatment of actinomvcin D prior to heat shock completely inhibited the induction of fish HSP70, indicating the transcriptional regulation of fish HSP70 gene expression. In HeLa and CHSE-214 cells either recovering from heat shock or experiencing prolonged heat shock, attenuation in the HSP90 a'nd HSP70 induction occurred but both induction and repression of HSP70 synthesis appear 19 precede those of HSP90. Moreover, attenuation did not occur in the syntheses of 40 kDa and 42 kOto proteins which were only induced in CHSE-214 cells. The enhanced syntheses of these he proteins continued as long as CHSE-214 cells were Siven heat shock. These results suggest that down-regulation of HSP syntheses during prolonged heat shock may be controlled by several different. as vet undefined, mechanisms.

  • PDF

Effects of heat and ethanol shock on the membrane proteins of Vibrio vulnificus (열 및 에탄을 shock이 Vibrio vulnificus의 막단백질에 미치는 영향)

  • Heo, Moon-Soo;Jung, Cho-Rok
    • Journal of fish pathology
    • /
    • v.12 no.2
    • /
    • pp.89-99
    • /
    • 1999
  • New sixteen heat shock proteins (Hsps) and ten ethanol shock proteins were appeared on the analysis with SDS-PAGE when cultivation temperature for the Vibrio vulnifrcus ATCC 27562 strain was shifted-up to $42^{\circ}C$ from $30^{\circ}C$ for 20 mins and treated with of 6% ethanol for 10 mins, respectively. Even the induction of thermotolerance in V. vulnificus was coincided with the induction of Hsps if the pre-shock was adjusted to thermal temperature. Outer membrane proteins (OMPs) that were purified from the membrane of cells after heat shock showed more immunodominant pattern to the immunized rabbit anti-V. vulnificus O serum in enzyme-linked immunosorbent assay (ELISA). On the western immunoblot analysis it was confirmed that both 62 kDa IMP and 69 kDa OMP in the Hsps and 48 kDa IMP a major OMP in the ethanol shock proteins were reacted with rabbit anti-V. vulnificus O sera. Agglutination titer of the heat shocked V. vulnificus with rabbit anti-V. vulnificus O serum was higher than that of the untreated bacteria.

  • PDF

Ethanol Tolerance of Campylobacter jejuni by Ethanol Shock (Ethanol 충격에 의한 Campylobacter jejuni 의 Ethanol 내성)

  • 김치경;가익현
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.377-382
    • /
    • 1992
  • The responses of C. jejuni to ethanol shock were studied for their survival. synthesis of ethanol shock proteins, and increased survival at higher concentration of ethanol upon prior treatments of ethanol. When C. jejuni were shocked with ethanol at 1. 3. and 5% for 60. 30 and 10 minutes, respectively. those cells synthesized the ethanol shock proteins of 90, 66, 60, 45, and 24 kd in molecular weight. When the C. ,jejuni shocked with 1 and 3% ethanol were exposed to 3 and 5% ethanol for 30 minutes. their survival rates were increased by $10^1$~$10^2$ as compared with those of the cells without ethanol-shock. In the same way. C. ,jejuni shocked with 5% ethanol for 10 minutes :.bowed about 102 times higher survival rates than the cells without ethanol-shock. This result suggests that C jejuni shocked with I-5% ethanol for 10-30 minutes synthesized five kinds of ethanol shock proteins. and that the shock proteins contributed to increase ethanol tolerance for their survival at the higher concentrations of ethanol.

  • PDF

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Protein Expression Analysis of Halobacillus dabanensis $D-8^T$ Subjected to Salt Shock

  • Feng De Qin;Zhang Bo;Lu Wei Dong;Yang Su Sheng
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.369-374
    • /
    • 2006
  • To investigate the mechanism of salt tolerance of gram-positive moderately halophilic bacteria, two-dimensional gel electrophoresis (2-D PAGE) was employed to achieve high resolution maps of proteins of Halobacillus dabanensis $D-8^T$. Approximately 700 spots of proteins were identified from these 2-D PAGE maps. The majority of these proteins had molecular weights between 17.5 and 66 kDa, and most of them were distributed between the isoelectric points (pI) 4.0 and 5.9. Some protein spots were distributed in the more acidic region of the 2-D gel (pI <4.0). This pattern indicated that a number of proteins in the strain $D-8^T$ are acidic. To understand the adaptation mechanisms of moderately halophilic bacteria in response to sudden environmental changes, differential protein profiles of this strain were investigated by 2-D PAGE and $Imagemaster^{TM}$ 2D Platinum software after the cells were subjected to salt shock of 1 to 25% salinity for 5 and 50 min. Analysis showed 59 proteins with an altered level of expression as the result of the exposure to salt shock. Eighteen proteins had increased expression, S proteins were induced, and the expression of 33 proteins was down-regulated. Eight of the up-regulated proteins were identified using MALDI-TOF/MS and MASCOT, and were similar to proteins involved in signal transduction, proteins participating in energy metabolism pathways and proteins involved in stress.