• Title/Summary/Keyword: shock model

Search Result 1,049, Processing Time 0.025 seconds

NUMERICAL STUDY ON THE FREQUENCY CHARACTERISTICS OF SCREECH TONE IN A SUPERSONIC JET (초음속 제트의 스크리치 톤 주파수 특성에 관한 수치적 연구)

  • Kim, Yong-Seok;Ryu, Ki-Wahn;Hwang, Chang-Jeon;Lee, Duck-Joo
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • An axisymmetric supersonic screeching jet is numerically simulated to examine the length scales of screech frequency as well as screech tone generation mechanism. The axisymmetric Reynolds-averaged Navier-Stokes equations in conjuction with a modified Spalart-Allmaras turbulence model are employed. It is demonstrated that the axisymmetric jet screech tones can be simulated correctly and the numerical results are in good agreement with the experimental data. Instability waves, shock-cell structures and the phenomena of shock motion are investigated in detail to identify the screech tone generation mechanism. Shock spacings and standing wave length are analyzed to determine the dominent length scale crucial to the screech frequency formulation.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

UNSTEADY SUPERSONIC INLET DIFFUSER FLOWS WITH SINUSOIDAL PRESSURE OSCILLATIONS

  • Jong Yun Oh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.107-116
    • /
    • 1996
  • Numerical simulations have been conducted to characterize unsteady flow structures in an axisymmetric supersonic inlet diffuser with sinusoidal pressure oscillations at the diffuser exit. The formulation is based on the unsteady Navier-Stokes equations and turbulence closure is achieved using a two-layer model with a too-Reynolds-number scheme for the near-wall treatment. The governing equations are formulated in an integral form, and are discretized by the four-stage Runge-Kutta scheme for temporal terms and the Harten-Yee upwind TVD scheme for convective terms. Results indicated that the inlet shock characteristics are significantly modified by acoustic oscillations originating from the combustor. The characteristics of shock/boundarv-layer interactions (such as the size of separation bubble, terminal shock shape, and vorticity intensity) are also greatly iufluenced by the shock oscillation due to acoustic waves.

  • PDF

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

Shock Graph for Representation and Modeling of Posture

  • Tahir, Nooritawati Md.;Hussain, Aini;Abdul Samad, Salina;Husain, Hafizah
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.507-515
    • /
    • 2007
  • Skeleton transform of which the medial axis transform is the most popular has been proposed as a useful shape abstraction tool for the representation and modeling of human posture. This paper explains this proposition with a description of the areas in which skeletons could serve to enable the representation of shapes. We present algorithms for two-dimensional posture modeling using the developed simplified shock graph (SSG). The efficacy of SSG extracted feature vectors as shape descriptors are also evaluated using three different classifiers, namely, decision tree, multilayer perceptron, and support vector machine. The paper concludes with a discussion of the issues involved in using shock graphs to model and classify human postures.

  • PDF

DYNAMICS OF HUMAN BODY RESPONDING TO SHOCK-TYPE VERTICAL WHOLE-BODY VIBRATION (수직방향 충격 진동에 대한 인체동역학적 특성)

  • Ahn, Se-Jin;Yoon, Seong-Ho;Chang, Ik-Soon;Kim, Joong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.546-550
    • /
    • 2008
  • Impulsive excitation on vehicles produces shock-type vibration on the seat, usually which has major frequencies and damping ratios dependent on the characteristics of the suspension, the tire, the seat cushion and so on. The response of single degree of freedom model to a half-sine force input was considered as simple shock-type vibration signal. The quasi-apparent-mass for fifteen subjects was obtained with the shock-type vibration generated on the rigid seat, so its nonlinearity was found over 6.3 Hz according to the difference of magnitude of the shocks.

  • PDF

Development of numerical-computation program to predict thermal shock induced by fs laser processing of meatals (펨토초 레이저 금속 가공시 발생하는 열충격 수치계산 프로그램 개발)

  • O, Bu-Guk;Kim, Dong-Sik;Kim, Jae-Gu;Lee, Je-Hun
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • It has been recognized that laser dicing of wafers results in low mechanical strength compared to the conventional sawing techniques. Thermal shock generated by rapid thermal loading is responsible for this problem. This work presents a two-dimensional ultra-short thermo elastic model for numerical simulation of femtosecond laser ablation of metals in the high-fluence regime where the phase explosion is dominant. Laser-induced thermoelastic stress is analyzed for Ni. The results show that the laser-induced thermal shock is large enough to induce mechanical damages.

  • PDF

Shock response analysis to underwater explosion using Hydrocode (Hydrocode를 이용한 수중폭발 충격응답 해석)

  • Lee, Sang-Gab;Park, Chung-Kyu;Kweon, Jung-Il;Jeong, Sung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1174-1179
    • /
    • 2000
  • In recent years, the structural shock response to underwater explosion has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. For the simulation of underwater explosions against, surface ships or submerged structures one has to include the effects of the explosive shock wave, the motion of the gaseous reactive products, the local cavitation collapse, the different nonlinear structural properties and the complex fluid-structure interaction phenomena. In this study, as benchmark step for the validation of hydrocode LS/DYNA3D and of technology of fluid-structure interaction problems, two kinds of cavitation problems are analyzed and structural shock response of floating ship model are compared with experimental result.

  • PDF

A State-age Dependent Policy for a Shock Process - Structural Relationships of Optimal Policy -

  • Joo, Nam-Yun
    • Journal of the military operations research society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-39
    • /
    • 1984
  • Consider a failure model for a stochastic system. A shock is any perturbation to the system which causes a random amount of damage to the system. Any of the shocks can cause the system to fail at shock times. The amount of damage at each shock is a function of the sum of the magnitudes of damage caused from all previous shocks. The times between shocks form a sequence of independent and identically distributed random variables. The system must be replaced upon failure at some cost but it also can be replaced before failure at a lower cost. The long term expected cost per unit time criterion is used. Structural relationships of the optimal replacement policy under the appropriate regularity conditions will be developed. And these relationships will provide theoretical background for the algorithm development.

  • PDF

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF