• Title/Summary/Keyword: ship motions

Search Result 291, Processing Time 0.031 seconds

A Study On the Position Control System of the Small ROV Using Sonar Sensors (소나 센서를 이용한 소형 ROV의 위치제어시스템에 관한 연구)

  • Choi, Dong-Hyun;Um, Geun-Nam;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.579-589
    • /
    • 2008
  • In the past few years, there are many studies and researches of the underwater vehicles which are carried out its mission using sonar sensors. MSCL(Marine System Control Lab.) at Inha University developed test-bed small ROV, ISRO. ISRO is an open-frame type and has 4 thrusters. ISRO can control 4 motions i.e surge, sway, yaw and heave with sonar sensors. ISRO is developed for inspection of ship hull, marine structure, plant of lake or river and so on. When ROV ISRO inspects something, it is necessary to control the position of ROV ISRO's for the movement and anti-collision with structures in the underwater. In this paper, we deal with the development of a small ROV and verification of the position control system via simulation and experiment using sonar sensors.

Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme (동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.

Kinematic and Image Stabilization of a Two-axis Surveillance System on Ship (선상 2축 감시장비의 기구 및 영상 안정화)

  • Lee, Kyung-Min;Cho, Jae-Hyun;Kim, Ho-Bum;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • When operating a surveillance system in the maritime environment, its stabilization performance is degraded due to undesirable disturbance motions. For accurate target pointing of a 2-axes surveillance system on shipboard, the kinematic stabilization is first applied, which compensates a deviated motion via coordinate transformations of attitude information. Resultantly, the stabilization error is no longer reduced due to less accuracy of a MEMS sensor and kinematic constraint, leading to introduction of the image stabilization as a complementary function. And for real-time execution of the present dual stabilization scheme, a HILS (Hardware In the Loop Simulation) test bed including 6-dof motion simulator has been constructed, and through the obtained HILS data, it has been confirmed that the stabilization is successfully.

A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method (ISPH법을 이용한 2차원 비압축성 유체 유동의 수치시뮬레이션 기법 연구)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.560-568
    • /
    • 2011
  • In SPH(Smoothed Particle Hydrodynamics) method, the fluid has been assumed that it is weakly compressible to solve the basic equations composed of Navier-Stokes equations and continuity equation. That leads to some drawbacks such as non-physical pressure fluctuations and a restriction as like small time steps in computation. In this study, to improve these problems we assume that the fluid is incompressible and the velocity-pressure coupling problem is solved by a projection method(that is, by ISPH method). The two-dimensional computation results of dam breaking and gravitational wave generation are respectively compared with the results of finite volume method and analytical method to confirm the accuracy of the present numerical computation technique. And, the agreements are comparatively acceptable. Subsequently, the green water simulations of a two-dimensional fixed barge are carried out to inspect the possibility of practical application to ship hydrodynamics, those correspond to one of the violent free surface motions with impact loads. The agreement between the experimental data and the present computational results is also comparatively good.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Interference Pattern Analysis of the Radiated Noise in Submarine Passive Sonar (잠수함 수동소나에서 방사소음의 간섭패턴 분석)

  • Kim, ByoungUk;An, SangKyum;Lee, Kuenhwa;Seong, WooJae;Hahn, JooYoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.456-464
    • /
    • 2013
  • Passive sonar in submarine can detect the target in long range and can attack using it. There are many noises which can be received at passive sonar of submarine. When noise received in the sonar it make diverse interference pattern depend on the ocean ambient and movement scenario. Interference pattern can be explained by theory of waveguide invariant. In this paper, analyze the interference pattern according to the relative motions of surface ship and submarine. And analyze the occurrence reason of 2 kinds of interference patterns those are usually display on the submarine console. The results show that if relative speed of submarine and target increase then gradient of interference pattern will increase. And closest point approach of submarine and target decrease then gradient of interference pattern will increase. Bathtube pattern usually appear when target pass though close to submarine and Pinetree pattern appear target pass though above of submarine.

The Influence of Tsunamis on Moored Ships and Ports

  • Kubo Masayoshi;Cho Ik-Soon;Sakakibara Shigeki;Kobayashi Eiichi;Koshimura Syunichi
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • Planning for the construction of ports and harbors usually takes place without the consideration of tsunamis because of their rare occurrence, approximately once every 100 years. However, recent warnings indicate that massive earthquakes could occur in Japan within the next 30 years. Earthquakes may generate large-scale tsunamis. Therefore, any tsunamis in the vicinity of Japan would also be expected to affect eastern Korea. Therefore, with the looming concerns of tsunamis and earthquakes, immediate attention must be given to the planning of ports and harbors. The warnings deserve an immediate response. The threatened regions cover a very large territory, and the degree of severity of the tsunamis is forecasted to be varied. Therefore, any modeling of the potential scenarios will require a broad array of possibilities. The objective of this paper is to consider the potential damage from tsunamis to ports and moored ships in Japan and Korea. In addition, consideration will be given to how the construction plans of ports and harbors should be changed to cope with the threats from earthquakes and tsunamis.

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

Numerical Simulation of Tsunami Impact Load Using 3-Dimensional Particle Method (파랑 충격하중에 관한 3차원 입자법 수치모사)

  • Kim, Young-Hun;Jung, Sung-Jun;Lee, Byung-Hyuk;Hwang, Sung-Chul;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.42-46
    • /
    • 2007
  • The impact of a single wave generated by a dam break with a tall structure is modeled with a three-dimensional version of the Moving particle semi-implicit (MPS) method. The particle method is more feasible and effective than methods based on grid connection problems involving violent free surface motions. In the present study, the Tsunami impact load and the change of longitudinal velocity component around the structure, which are obtained from the numerical simulation, are compared to those from experiments.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.