• Title/Summary/Keyword: ship block

Search Result 210, Processing Time 0.029 seconds

조선 중일정계획시스템을 위한 공정계획 객체 설계에 관한연구

  • 최해주;박주철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.290-293
    • /
    • 2001
  • The mid-schedule planning of the ship is making a schedule about the process from cutting to erection. The ship consists of lots of blocks. This block has different process because of the shape of the block varies in accordance with the ship-type and the part position of the ship. The type and order of each block process initially must be generated for the mid-schedule planning. In this paper, the process planning, described as above is preparing the basic information before scheduler make a plan with the prepared manhour. The scheduling is done with this process planning which includes the information of the process order. This paper shows the research about three methods to design the process planning. First, investigate the expression method about information of the process planning for the mid-schedule planning in real workplace. Second, design the object of the process planning on the basis of investigating the expression method. Finally, develop the prototype of object on the basis of this designed process planning and then find the practical use in the mid-schedule planning. The object, which is developed in this paper, contains the main algorithm. In case of developing The Mid-Schedule Planning System, this object is expected to be utilized very easily as consisting another object.

  • PDF

A Study on Docking Analysis for Conventional LNGC (Conventional LNGC의 도킹 해석에 관한 연구)

  • Choi, Joong-Hyo;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.10-15
    • /
    • 2008
  • The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC$(138K{\sim}151.7K)$ are introduced in this paper.

  • PDF

A Research on Completeness Assessment of Blocks using DOF Restriction (자유도 제약을 이용한 블록의 완성도 평가 연구)

  • Kim, Chan Suk;Shin, Jong Gye;Noh, Jack You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.356-361
    • /
    • 2014
  • Accurate block shape assessment is critical for ship manufacturing and a careful assessment of the shape of a fabricated block against the design shape is a core issue. However, in current fabrication practice, the shape of each block is evaluated manually using rigid body transformation. This manual evaluation process entirely depends on workers' experiences and knowledge and makes automation of block shape assessment difficult. In this paper we propose a computation method on the registration for shape assessment of a block during the fabrication process and for evaluation of its completion against the design shape. A conversion on matching method by adding DOF(degree of freedom) restriction is required to reach the goals. We test our method using a real block quality assessment data to demonstrate its applicability to real ship manufacturing process.

A weld-distortion analysis method of the shell structures using ultra structural FE model (초대형 구조모델을 활용한 쉘구조물의 용접변형 해석)

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

AVEVA Marine Scheme-based Modeling for Reuse of Ship Hull Block Model (조선 선체 블록 모델의 재사용을 위한 AVEVA Marine Scheme 기반 모델링)

  • Son, Myeong-Jo;Kang, Hyungwoo;Kim, Tae-Wan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For the reuse of the existing 3D block model of a ship, we analyze the hull modeling process using AVEVA Marine which is a representative CAD (Computer-Aided Design) system for the shipbuilding. In the AVEVA Marine environment where the design engineer makes 3D model on the 2D view that is so-called 2.5D, it cannot be possible to copy to reuse the block model just simply copying the 3D feature model itself like in the general mechanical CAD system or Smart Marine 3D which are on the basis of the 3D model representation. In this paper, we analyze the scheme file where the 3D model is defined in AVEVA Marine so that we develop the program for the block copy and the translation using this scheme file. It is significant that this program can be immediately available as a real-world application on the AVEVA Marine environment.

A Block Division CAPP System Supported by Expert System (전문가시스템의 지원을 받는 블럭분할 CAPP 시스템)

  • Jae-Won Lee;In-Sik Hwang;Yong-Jae Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.44-50
    • /
    • 1995
  • We describe here the research work concerning the development of the CAPP(computer aided process planning) system, named BLOCK. designed to support block division of ship. The system consists of the expert system part generating block division lines, and their evaluation and editing one. As a reasoning approach of expert system, the case-based reasoning is used. The division lines can be graphically edited and the satisfaction measure of block division can be checked up in the evaluation stage with separate window. The expert system is developed by using NEXPERT Object development tool in the workstation. Currently the target ship is VLCC.

  • PDF

Study on Erection Block Positioning Using Genetic Algorithm (유전자 알고리즘을 이용한 탑재블록 위치제어에 관한 연구)

  • Shin, Sung-Chul;Lee, Jae-Chul;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • In the shipbuilding industry, accuracy management is one of the keys for strengthening competitiveness. However, ship block errors are unavoidable in the block erection stage because of the deformation of the blocks. Currently, accuracy managers decide whether or not block corrections are needed, based on measured and designed point data. They adjust the locations of hull blocks so that the blocks are aligned with other assembly blocks based upon the experience of production engineers. This paper proposes an optimization process that can adjust the locations of ship blocks during the erection stage. A genetic algorithm is used for this optimization scheme. Finally, the feasibility of the proposed method is discussed using several case studies. We found that the proposed method can find the optimized re-alignment of erection blocks, as well as improve the productivity of the erection stage.

Block-based Self-organizing TDMA for Reliable VDES in SANETs

  • Sol-Bee Lee;Jung-Hyok Kwon;Bu-Young Kim;Woo-Seong Shim;Dongwan Kim;Eui-Jik Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.511-527
    • /
    • 2024
  • This paper proposes a block-based self-organizing time-division multiple access (BSO-TDMA) protocol for very high frequency (VHF) data exchange system (VDES) in shipborne ad-hoc networks (SANETs). The BSO-TDMA reduces the collisions caused by the simultaneous transmission of automatic identification system (AIS) messages by uniformly allocating channel resources using a block-wise frame. For this purpose, the BSO-TDMA includes two functional operations: (1) frame configuration and (2) slot allocation. The first operation consists of block division and block selection. A frame is divided into multiple blocks, each consisting of fixed-size subblocks, by using the reporting interval (RI) of the ship. Then, the ship selects one of the subblocks within a block by considering the number of occupied slots for each subblock. The second operation allocates the slots within the selected subblock for transmitting AIS messages. First, one of the unoccupied slots within the selected subblock is allocated for the periodic transmission of position reports. Next, to transmit various types of AIS messages, an unoccupied slot is randomly selected from candidate slots located around the previously allocated slot. Experimental simulations are conducted to evaluate the performance of BSO-TDMA. The results show that BSO-TDMA has better performance than that of the existing SOTDMA.

Formulation for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.293-308
    • /
    • 2006
  • This paper presents a complete and consistent formulation to study the seismic response of a free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is considered that the foundation of the system is subjected to both horizontal and vertical in plane excitation. The motion of the system is classified in eight different modes which are Rest (relative), Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the governing equations are derived, and transition conditions between different modes are also defined. This formulation is based on a number of fundamental assumptions which are 2D idealization for motion of the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in the system. The formulation presented in this paper can be used in its entirety or in part, and they are suitable for investigation of generalized response using suitable analytical, or conducting a time-history sensitivity analysis.

Block layout method in the block stockyard based on the genetic algorithm

  • Roh, Myung-Il
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.271-287
    • /
    • 2012
  • Due to its large size, a ship is first divided into scores of blocks and then each block is constructed through various shops, such as the assembly shop, the painting shop, and the outfitting shop. However, each block may not be directly moved to the next shop and may be temporarily laid at a block stockyard because the working time in each shop is different from each other. If blocks are laid at the block stockyard without any planning, the rearrangement of the blocks by a transporter is required because the blocks have the different in and out time. In this study, a block layout method based on the genetic algorithm was proposed in order to minimize the rearrangement of the blocks in the block stockyard. To evaluate the applicability of the proposed method, it was applied to simple layout problems of the block stockyard. The result shows that the proposed method can yield a block layout that minimizes the total relocation cost of moving obstacle blocks in the block stockyard.