• Title/Summary/Keyword: ship G0M

Search Result 27, Processing Time 0.024 seconds

Estimation of Maximum Outward Heel Angle During Turning of Pure Car and Truck Carriers (자동차운반선 선회 중 최대 횡경사각 추정에 관한 연구)

  • Hyeok-beom Ju;Deug-bong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2024
  • The height of large car and truck carriers from the keel to the wheel house is 44 ~ 46 m, and as the car-carriers increases in size, it exhibits the 'top heavy' characteristic, where the upper section is heavier than the lower section. This study aims to estimate the maximum outward heel angle of the Golden Ray car-carrier (G-ship) during turning maneuvers for accident investigation and the prevention of similar accidents. The theoretically calculated maximum outward heel is 7.5° (at 19 kn, rudder angle 35°) with a GM of +3.0 m or higher, and 16.7° with a GM of +1.85 m. Meanwhile the experimentally modified maximum outward heel is 10.5° (at 19 kn, rudder angle 35°) with a GM of +3.0 m or higher, and 23.3° with a GM of +1.85 m. The G-ship is maneuvered during an accident at a speed of 13 kn, at starboard rudder angle of 10° to 20°, it changes course from 038°(T) to 105°(T) based on the instructions of the on-board pilot. At this time, the maximum outward heel is estimated to be between 7.8° and 10.9° at the port side, which is 2.2 times higher than the normal outward heel. In the IS code, cargo ships are required to exhibit a minimum GoM of +0.15 m or more. The maneuvered G-ship exhibits a GoM of +1.72 m. It is not maneuvered because it fails to satisfy the international GoM criteria and because its GoM is insufficient to counteract the heeling moment during the maneuver. This study is performed based on accident-investigation results from the Korea Maritime Safety Tribunal and the USCG.

Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port (자동차 선적작업장의 공기오염 실태조사)

  • Kim, Ji-Ho;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

Desigh and Wavemaking Effect of Bulvous Bow Ship by Stream Line Tracing Method (유선추적법(流線追跡法)에 의(依)한 구상선수선형(球狀船首船型)의 계획(計劃) 및 조파효과(造波效果))

  • S.W.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.2
    • /
    • pp.19-28
    • /
    • 1973
  • This paper deals with a problem for determining the bulbous bow ship from which pertains to the study of the theoretical ship form planing method. In this paper has been determined the bulbous bow ship form which is a similar in geometric particulars with the conventional liner ship G.T.10, 000 by adopting the variable method for finding the optimum ship form by A.Y.C. Lee and the streamline tracing method by T. Inui and P.C. Pien. Each resistance performance is examined by the towing test and is compared with one another. The followings are the outcome of this study: Among the 5 type models, the bulbous bow ship form M.S. B 1120 is the most excellent for the resistance performance. The effect for the wave resistance is very sharp according to the difference of the bottom flattening of theoretical ship form. The optimum value of the bulbous bow for wave resistance can be obtained by the variable method mentioned above, and for the series of(Main hull+Bulb)opt., ${\alpha}=75/25$, the value is $f{\approx}0.11$.

  • PDF

A Study on the Maneuverabilities of the M . S . Cheju 402 Stern Trawler (실습선 제주 402호의 조종성능에 관한 연구)

  • Jeong, Kong-Heon;Ahn, Jang-Young;Ahn, Young-Wha
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.70-74
    • /
    • 1989
  • This paper, described on the maneuverabilities of M.S. Cheju 402, the stern trawler (159 G.T.), training ship of Cheju National University which carried out the turning circle tests at helm angle 35$^{\circ}$ and 10$^{\circ}$, 20$^{\circ}$, 30$^{\circ}$Ztests of her. The results obtained were as follows; 1. The advances of the starboard and port turning circles were 79.1m, about 2.6 times of the length of the ship, and 81.4m, about 2.7 times of it, respectively. 2. The rates of speed reduction were about 0.49 together, and mean values of turning angular velocity of her at helm angle 35$^{\circ}$ into the starboard and port sides were 4.3$^{\circ}$/sec and 4$^{\circ}$/sec during the turning movement. 3. Overshoot angles of starboard side werelarger than those of port side at all Z tests, and mean values of them of the starboard and port sides at 10$^{\circ}$, 20$^{\circ}$, 30$^{\circ}$Z tests were 110.5$^{\circ}$ 20.5$^{\circ}$, 28.5$^{\circ}$ respectively. 4. The maneuvering indices K and T of experimental ship at 10$^{\circ}$, 20$^{\circ}$, 30$^{\circ}$, Z tests were 0.755 and 3.468, 0.566, and 1.621, and 0.481 and 1.547 respectively. Consequently, the experimental ship showed that her turning ability was more in effective as the helm angle was becomed larger and her obeying ability was more effective as it was becomed larger.

  • PDF

A Study on the Maneuverabilities of the Training ship M.S. A-RA (실습선 아라호(M.S. A-RA)의 조종성능에 관한 연구)

  • 안영화;박명호;최환문;정용진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.275-284
    • /
    • 2001
  • The for this study, turning circle tests and maneuvering indices were conducted to study and evaluate the maneuverabilities of the fishery training ship M.S. A-RA(G/T : 990tons). The results obtained were summarized as follows : 1. The advances of the starboard and port of the turning circle were measured based on the dumb card test method were 198m, 192m, the size of tactical diameters of them were 194m, 188m, respectively. 2. The advances at the starboard and port of the turning circles were measured according to the DGPS positioning obtained 196m, 194m, the size of tactical diameters of them were 194m, 190m, respectively. 3. The results were compared which came from the sizes of turning circle measured up with the dumb card test method during the trial test and from the size of turning circle measured according to the DGPS positioning. The advance of the turning circle measured at the time of the starboard turning according to the DGPS positioning was 1m longer than that of the trial test. And it was 21m shorter at the time of the port turning. 4. The rudder was steered at $35^{\circ}$ of rudder angle each starboard and port while the ship M.S. A-RA was advancing at full speed of 13 k't. The velocity of the ship was reduced to 7.8 k't at $180^{\circ}$ of turning angle and 6.0 k't at $360^{\circ}$ of turning angle and mean values of turning angular velocity of the port and starboard were $2.4^{\circ}$/sec and $2.3^{\circ}$/sec, respectively. 5. The Z test at each $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$ of rudder angle was carried out to have the maneuvering indices K and T measured. K for the each rudder angle were 1.24, 1.45, and 1.65 while T for the each rudder angle were 0.33, 0.20, and 0.14. That is, K at the Z test at $30^{\circ}$ was greater than at the Z test of $10^{\circ}$ and $20^{\circ}$ while T at the $30^{\circ}$ Z test was less than at the Z test of $10^{\circ}$ and 20.

  • PDF

Basic Study to Establish Marine Activity Criteria Based on the Seakeeping Performance of Less Than 10-tons Fishing Vessels(I) (내항성능 기반 10톤 미만 어선의 해양활동 기준 마련 기초 연구(I))

  • Choi, Gwang-Young;Song, Chae-Uk;Park, Young-Soo;Park, Jun-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.965-972
    • /
    • 2022
  • This is a basic study to establish marine activity criteria based on the seakeeping performance of less than 10-tons fishing vessels. These vessels account for approximately 95% of Korea's currently registered fishing vessels, and accidents and loss of life are also occurring during marine activities such as navigation, and fishing. Accordingly, the Ministry of Oceans and Fisheries has set a regulation of vessel traf ic control to restrict the operation of fishing vessels when the high seas watch takes effect, but it is applied equally without criteria according to the ship ton level and wave height; therefore, many differences may exist in ship fluctuations. Because the fluctuation of the ship owing to the wave height can be a factor in marine accidents by reducing the sense of boarding and performance of equipment, the seakeeping performance must be reviewed during waves to secure safe marine activities such as navigation and fishing. However, the review for the fishing vessel of established marine activity criteria based on the seakeeping performance is insufficient. Accordingly, the seakeeping performance was evaluated for a 10-ton class (G/T 9.77 tons) fishing vessel in Korea, and the level of marine activity according to the significant wave height and ship speed was interpreted by applying the operation and survival of the established seakeeping performance criteria. The analysis results indicated that the roll of the ship exceeded the operation criteria from 0.4m and the survival criteria from 2.2m. The pitch of the ship exceeded the operation criteria from 1.7m and did not exceed the survival criteria until 3.0m. However, the rolling exceeding the survival criteria from 2.2m may not be safe. Therefore, fishing vessels with less than 10-tons can leave before the high seas watch takes effect. However, they did not satisfy the criteria for evaluating the performance of the sea in relation to marine activities. Although this study was limitedly evaluated for 10-ton fishing vessels, it is expected to be of great help in preparing marine activity criteria.

Field Experiments and Analysis of Drift Characteristics of Small Vessels in the Coastal Region off Busan Port (부산항 연안해역에서의 소형선박 표류 거동특성 관측 및 분석)

  • Kang, Sin-Young;Lee, Mun-Jin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.221-226
    • /
    • 2002
  • To provide reliable data for drift prediction models, field experiments were carried out in the coastal region off Busan port. Four different size of vessels(10, 30, 50, 90G/T ton) were deployed for the experiment. Among them G/T 50ton class vessel was equipped with instruments measuring the currents, winds, headings and trajectory data. In the rest of vessels only the position data were recorded for the purpose of target divergence study. The trajectories of each vessel were measured by DGPS(Differential Global Positioning System) and collected by APRS(Automatic Position Reporting System). The experiment was done in wind of 2~10m/s and current of 0.5~1.5m/s. The leeway was derived by subtracting surface current velocity from target drifting velocity. The leeway rate of G/T 50ton vessel was found to be about 3.6% and the computed leeway speed equation was $U_L$=0.042 W - 0.034. The processed leeway angle data were deflected by $-30^{\circ}$~$40^{\circ}$ from the direction of ship drift.

Mathematical Model for the Hydrodynamic Forces in Forward or Backward Low Speed Maneuvering (저속(低速) 전.후진(前.後進) 조종(操縱)에 의한 동유체력(動流體力)의 수학(數學)모델)

  • Jin-Ahn Kim;Seung-Keon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.45-52
    • /
    • 1992
  • The Mathematical Model, which can describe the maneuvering motion of a ship in low speed, is highly required these days because it is directly related to the safety of ship in confused harbour. Kose has presented a new model for the low speed maneuvering motion, but the usefulness of it is not confirmed widely. Lets of difficulties are revealed in the case of low speed maneuver, The first is the fact that a ship moves the stirred water region for the longer time than in the case of high speed. So, the hydrodynamic forces, exerted on the hull need to be treated strictly, not by the ordinary differential equation with constant coefficients. Another difficulty is arised from the fact the lateral motion is relatively large comparing to the longitudinal motion in low speed. And, by the result the effect of cross-flow drag or vortex sheding effects are dominant. Besides, the captive model tests of low speed motion has lots of problems. For example, the hydrodynamic forces do not converge to a certain values for the long time. And the absolute values of measured forces are very small, so we must expend lots of efforts to raise up the S/N ratio of the experiments. In this paper, a new mathematical model for the maneuvering motion in low speed, is built up, and the usefulness is discussed, comparing with other models, for example, Kose's model or M.M.G. model or Cross-Flow model, The CMT data for a PCC model of 3.00 M length, released from the RR-742 of Japan, are used for the validation of each models.

  • PDF

Analysis on the Dynamic Responses of Fishing Vessels in a Seaway (파랑중 어선의 동력학 해석)

  • 이희상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • Ships in a seaway will encounter dangerous situation, such as slamming, stranding, and capsizing. The number of capsizing is small, but the loss due to them is very large from the viewpoint of human life, property, and the environmental pollution. The number of capsizing of fishing vessels is about 62% of total number of capsizing, and the half of them is originated from the operational mistake in a seaway. So the dynamics and the capsizing phenomena are to be studied, and the guide for the safe operation of a fishing vessel in a seaway are to be specified. The hydrodynamic forces consist of radiation forces (which are due to the motion of a ship), Froude-Krylov forces (which is due to the incoming waves), and diffraction forces (which is due to the wave and ship interaction). These forces are calculated by well-known strip method. Using the calculated forces, the motion of a ship in a regular sea is obtained. In the real seaway, the waves are very irregular, therefore the statistical analysis is very helpful. In this paper, using the results of the motion in a regular seaway and the wave spectrum, the motion in a irregular seaway are obtained and analyzed.

  • PDF