• Title/Summary/Keyword: shielding device

Search Result 117, Processing Time 0.021 seconds

Development of Patient-Immobilizing Device for Total Body Irradiation (TBI) (전신 방사선치료(Total Body Irradiation, TBI)를 위한 한국인에 맞는 환자 고정장치에 관한 연구)

  • 김명세
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.114-119
    • /
    • 2002
  • A immobilizing device that is essential for correct lung and lens shielding with homogenous dose distribution in fractionated total body irradiation was developed and it's efficiency was evaluated. The main frame was made of stainless steel bar (5 cm in diameter) to withstand up to 230 cm in height and 100 kg in weight to prevent any injury even in unconsciousness condition. The saddle was designed to adjust the body weight and hight of standing patients. Chest and back supporter were made of 1 cm acryl which could fix the lung block and cassette holder. Leather and sponge pedding were used for head rest to keep patients comfortable. The device was strongly fixed by specially designed bolts on the bottom panel which was made of 1 cm stainless steel and 10 cm thick wooden board. Precise manipulation ($\pm$2 mm) was possible by upper two pulleys and side handles. Average four minutes twenty five seconds were needed for exact setting in fractionated TBI. No significant difference of lung block location on repeated verification films was confirmed and relatively homogeneous dose distribution was measured in rando phantom experiments and patient treatments ($\pm$5%). This immobilizing device was very efficient to keep correct position of patients, which is essential for better result and less complication in fractionated TBI.

  • PDF

A study for CD stud welding of Magnesium alloy for electric device case (전자기기 케이스를 위한 마그네슘 판재 스터드 용접 기술에 관한 연구)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Choe, Sang-Un
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Magnesium sheet used in electrical device due to mobility and EMF shielding characteristics. Magnesium case by press forming was advantageous compare with conventional die casting process, because of its thin gauge of wall and surface quality. But it need to makes the boss to fix inner part or assemble the case. CD stud welding was effective way for joining the boss to the thin gauge case of the electrical devices. In this study, we investigated the performances of the magnesium boss welder To measure the process parameters such as the force and the weld current, we design the monitoring system for CD stud welding. We test the characteristics of CD stud welding for AZ31 sheets at some variables. Finally we select the optimum welding range of magnesium sheets in CD stud welding process.

  • PDF

A Study on the Safety of a Screening X-ray Laboratory Using Containers in accordance with the COVID 19 Outbreak (COVID 19 유행에 따른 컨테이너를 이용한 선별 X-선 검사실의 안전성에 대한 고찰)

  • Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.425-431
    • /
    • 2020
  • When a radiation generating device is installed in an export container due to COVID-19, the purpose of this study was to measure the space dose in the radiation room and to study the effectiveness of the shielding wall in the laboratory. Air dose measurement method was set behind the X-ray tube, 50 cm, 100 cm, 200 cm, and measured 12 locations. The dose values before and after the use of the movable radiation shielding wall were compared by measuring 3 locations behind the X-ray tube using the movable radiation shielding wall. The measured values were 50 cm on the left behind the X-ray tube: 1.446 μSv, behind the X-ray tube: 0.545 μSv, and 50 cm on the right behind the X-ray tube: 1.466 μSv. Measurements behind the radiation barrier were 0.190 μSv, 0.204 μSv, and 0.191 μSv. As a result of performing the corresponding sample t test of the average value according to the use of movable barrier walls, p <0.001 was found. As a result of the actual measurement, the medical exposure of the examiner due to the shielding wall in the laboratory decreased to 82.3%. In order to reduce occupational exposure in screening radiological laboratories, it is recommended that sufficient separation from radiation sources and the use of shielding walls are recommended.

Evaluation of the Apron Effectiveness during Handling Radiopharmaceuticals in PET/CT Work Environment (PET/CT 업무 환경에서 선원 취급 시 Apron의 실효성 평가)

  • Cho, Yong-In;Ye, Soo-Young;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Health professionals in nuclear medicine were known that they get high radiation exposure. To reduce radiation exposure, using shielding materials is needed. In this study, we analyzed the shielding effect about apron during 18F-FDG treatment by using simulation based on Monte Carlo techniques and actual measurement. As a result, absorbed dose distribution of organ varies with handling position of the source. Dose reduction ratio by lead thickness of apron tended to decease, when handling position of the source come close to organ and away from radiation source for simulation. In the case of actual measurement with the dosimetry device, It showed that mean spatial dose distribution was different due to characteristics of dosimetry device. However, spatial dose rate was exponentially reduced according to distance with increasing lead content.

Development of Radiation Restrictor for Secondary Radiation Shielding of Mobile X-ray Generator (이동형 X선 발생장치의 2차 방사선 차폐를 위한 선속조절기 개발 연구)

  • Koo, Bon-Yeoul;Kim, Gha-Jung
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.397-403
    • /
    • 2018
  • Mobile X-ray generators are used not in the radiation area but in open space, which causes the exposure of secondary radiation to the healthcare professionals, patients, guardians, etc., regardless of their intentions. This study aimed to investigate the shielding effect of the developed radiation restrictor to block the secondary radiation scattered during the use of mobile X-ray generator. Upon setting the condition of mobile X-ray generator with chest AP, spatial doses were measured by the existence of human equivalent phantom and radiation restrictor, and measured by the existences of phantom and radiation restrictor at the same length of 100 cm. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from $-90^{\circ}$ (head direction) to $+90^{\circ}$ (body direction). Upon the study results, spatial doses in all direction were increased by 45% on average when using phantom in the same condition, however, they were decreased by 64% on average when using the developed radiation restrictor. The dose at 100 cm from the center of X-ray was $3.0{\pm}0.08{\mu}Gy$ without phantom and was increased by 40% with $4.2{\pm}0.08{\mu}Gy$ after phantom usage. The dose when using phantom and the developed radiation restrictor was $1.4{\pm}0.08{\mu}Gy$, which was decreased by 66% compared to the case without using them. Therefore, it is considered the scattered radiation can be shielded at 100-150 cm, the regulation of the distance between beds, effectively with the developed radiation restrictor when using mobile X-ray generators, which can lower the radiation exposure to the people nearby including healthcare professionals and patients.

Analysis of breast shielding rate of bismuth shield (비스무스 차폐체의 유방 차폐율 분석)

  • Kim, Jae Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1132-1137
    • /
    • 2020
  • In order to reduce unnecessary exposure doses generated when mammography is performed using a mammography device, a shielding ratio analysis was performed when a self-made shielding body made of bismuth was applied to the breast opposite to the imaging site. In order to determine the scattering dose of uncompressed breasts during CC and MLO tests when the right and left are compressed, the experiment is divided into when bismuth is not shielded (Not used: NU group) and when shielded (Used: U group). Proceeded. The average dose of the NU group was 9.568μSv, and the average dose of the U group was 1.038μSv. The average measured dose before and after the use of the bismuth shield was reduced by 89.15%. The use of a bismuth shield for mammography can shield scattered radiation and keep exposure to radiation to a minimum.

Radionuclide identification method for NaI low-count gamma-ray spectra using artificial neural network

  • Qi, Sheng;Wang, Shanqiang;Chen, Ye;Zhang, Kun;Ai, Xianyun;Li, Jinglun;Fan, Haijun;Zhao, Hui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.269-274
    • /
    • 2022
  • An artificial neural network (ANN) that identifies radionuclides from low-count gamma spectra of a NaI scintillator is proposed. The ANN was trained and tested using simulated spectra. 14 target nuclides were considered corresponding to the requisite radionuclide library of a radionuclide identification device mentioned in IEC 62327-2017. The network shows an average identification accuracy of 98.63% on the validation dataset, with the gross counts in each spectrum Nc = 100~10000 and the signal to noise ratio SNR = 0.05-1. Most of the false predictions come from nuclides with low branching ratio and/or similar decay energies. If the Nc>1000 and SNR>0.3, which is defined as the minimum identifiable condition, the averaged identification accuracy is 99.87%. Even when the source and the detector are covered with lead bricks and the response function of the detector thus varies, the ANN which was trained using non-shielding spectra still shows high accuracy as long as the minimum identifiable condition is satisfied. Among all the considered nuclides, only the identification accuracy of 235U is seriously affected by the shielding. Identification of other nuclides shows high accuracy even the shielding condition is changed, which indicates that the ANN has good generalization performance.

Evaluation of the Shield Performance of Lead and Tungsten Based Radiation Shields (납과 텅스텐 기반 차폐체의 성능 비교 평가)

  • Jeong-Hwan Park;Hyeon-Seong Lee;Eun-Seo Lee;Hyo-Jeong Han;Yun-Hee Heo;Jae-Ho Choi
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2023
  • This study was intended to evaluate the shielding rate of radiation shields manufactured using 3D printers that have recently been used in various fields by comparing them with existing shields made of lead, and to find out their applicability through experiments. A 3D printer shield made of tungsten filament 1 mm, 2 mm, 4 mm shield, RNS-TX (nanotungsten) 1.1 mm, lead 0.2 mmPb, and 1mmPb were exposed to 99mTc, 18F, and 201TI for 15, 30, 45 minutes, and 60 minutes after measuring cumulative dose three times. Based on this, the shielding rate of each shield was calculated based on the dose in the absence of the shield. In addition, 99mTc, 18F, and 201TI were located 100 cm away from the phantom in which the OSLD nano Dot device was inserted, and if there was no shield for 60 minutes, the dose of thyroid was measured using 1.0 mm of lead shield, 1.1 mm of RNS-TX shield, and 2 mm of tungsten shield made by 3D printer. The use of shields during radiation shielding emitted from open radiation sources all resulted in a reduction in dose. The radiation dose emitted from the radionuclides under the experiment was all reduced when the shield was used. This study has been confirmed that tungsten is a material that can replace lead due to its excellent performance and efficiency as shield, and that it even shows the possibility of manufacturing a customized shield using 3D printer.

Design of the In-pile Plug Assembly and the Primary Shutter for the Neutron Guide System at HANARO (하나로 냉중성자 유도관 시스템을 위한 인파일 플러그 및 주개폐기의 설계)

  • Shin, Jin-Won;Cho, Young-Garp;Cho, Sang-Jin;Ryu, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1585-1589
    • /
    • 2007
  • The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the mechanical design of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  • PDF

Nd:YAG Laser Cladding of Inconel with Wire Feeding (와이어 공급에 의한 Inconel의 Nd:YAG 레이저 클래딩)

  • Kim, Jae-Do;Bae, Min-Jong;Peng, Yun
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.83-88
    • /
    • 2000
  • Laser cladding processing allows rapid transfer of heat to the material being processed with minimum conduction into base metal, resulting in low total heat input. The effects of Nd:YAG laser cladding with wire feeding on the mechanical properties of Inconel alloy were investigated. inconel alloy is used as the material of nuclear steam generator tubing because of its mechanical properties and corrosion resistance properties. The device for Nd:YAG laser cladding with wire feeding was designed. It consists of the wire feeding system, the wire cladding system and the shielding gas system which prevents the clad layer from being oxidized. Experimental as results indicated that the wire feeding direction and position were important for laser cladding with wire feeding. The wire feeding speed should be adapted according to cladding speed for good shaping of clad layer. The effect of heat on the HAZ size can be limited and the growth of grain size of HAZ size was not serious. The hardness of clad layer and heat affected zone increased with increasing of cladding speed.

  • PDF