DOI QR코드

DOI QR Code

Radionuclide identification method for NaI low-count gamma-ray spectra using artificial neural network

  • Qi, Sheng (State Key Laboratory of NBC Protection for Civilian) ;
  • Wang, Shanqiang (State Key Laboratory of NBC Protection for Civilian) ;
  • Chen, Ye (State Key Laboratory of NBC Protection for Civilian) ;
  • Zhang, Kun (State Key Laboratory of NBC Protection for Civilian) ;
  • Ai, Xianyun (State Key Laboratory of NBC Protection for Civilian) ;
  • Li, Jinglun (State Key Laboratory of NBC Protection for Civilian) ;
  • Fan, Haijun (State Key Laboratory of NBC Protection for Civilian) ;
  • Zhao, Hui (State Key Laboratory of NBC Protection for Civilian)
  • Received : 2020.11.03
  • Accepted : 2021.07.16
  • Published : 2022.01.25

Abstract

An artificial neural network (ANN) that identifies radionuclides from low-count gamma spectra of a NaI scintillator is proposed. The ANN was trained and tested using simulated spectra. 14 target nuclides were considered corresponding to the requisite radionuclide library of a radionuclide identification device mentioned in IEC 62327-2017. The network shows an average identification accuracy of 98.63% on the validation dataset, with the gross counts in each spectrum Nc = 100~10000 and the signal to noise ratio SNR = 0.05-1. Most of the false predictions come from nuclides with low branching ratio and/or similar decay energies. If the Nc>1000 and SNR>0.3, which is defined as the minimum identifiable condition, the averaged identification accuracy is 99.87%. Even when the source and the detector are covered with lead bricks and the response function of the detector thus varies, the ANN which was trained using non-shielding spectra still shows high accuracy as long as the minimum identifiable condition is satisfied. Among all the considered nuclides, only the identification accuracy of 235U is seriously affected by the shielding. Identification of other nuclides shows high accuracy even the shielding condition is changed, which indicates that the ANN has good generalization performance.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (12075318); State Key Laboratory of NBC Protection for Civilian (SKLNBC2018-01, SKLNBC2018-05, SKLNBC2020-04).

References

  1. M. Alamaniotis, J. Mattingly, L.H. Tsoukalas, Kernel-based machine learning for background estimation of NaI low-count gamma-ray spectra, IEEE Trans. Nucl. Sci. 60 (3) (2013) 2209-2221. https://doi.org/10.1109/TNS.2013.2260868
  2. M. Alamaniotis, S. Lee, T. Jevremovic, Intelligent analysis of low-count scintillation spectra using support vector regression and fuzzy logic, Nucl. Technol. 191 (1) (2015) 41-57. https://doi.org/10.13182/NT14-75
  3. M. Monterial, K.E. Nelson, S.E. Labov, S. Sangiorgio, Benchmarking Algorithm for Radio Nuclide Identification (BARNI) Literature Review (No. LLNL-SR-767242), Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2019.
  4. J. Kim, K.T. Lim, J. Kim, C.J. Kim, B. Jeon, K. Park, G. Cho, Quantitative analysis of NaI (Tl) gamma-ray spectrometry using an artificial neural network, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 944 (2019), 162549. https://doi.org/10.1016/j.nima.2019.162549
  5. J. Stinnett, C.J. Sullivan, H. Xiong, Uncertainty analysis of wavelet-based feature extraction for isotope identification on NaI gamma-ray spectra, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1670-1676. https://doi.org/10.1109/TNS.2017.2676045
  6. J.M. Blackadar, Automatic isotope identifiers and their features, IEEE Sensor. J. 5 (4) (2005) 589-592. https://doi.org/10.1109/JSEN.2005.846374
  7. S. Dragovic, A. Onjia, Artificial neural network data analysis for classification of soils based on their radionuclide content, Russ. J. Phys. Chem. A 81 (9) (2007) 1477-1481. https://doi.org/10.1134/S0036024407090257
  8. H. Sahiner, X. Liu, Gamma spectral analysis by artificial neural network coupled with Monte Carlo simulations, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 953 (2020), 163062. https://doi.org/10.1016/j.nima.2019.163062
  9. P.E. Keller, L.J. Kangas, G.L. Troyer, S. Hashem, R.T. Kouzes, Nuclear spectral analysis via artificial neural networks for waste handling, IEEE Trans. Nucl. Sci. 42 (4) (1995) 709-715. https://doi.org/10.1109/23.467888
  10. C. Zhang, G. Hu, F. Luo, Y. Xiang, G. Ding, C. Chu, et al., Identification of SNM based on low-resolution gamma-ray characteristics and neural network, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 927 (2019) 155-160. https://doi.org/10.1016/j.nima.2019.02.023
  11. S. Dragovic, A. Onjia, Artificial neural network data analysis for classification of soils based on their radionuclide content, Russ. J. Phys. Chem. A 81 (9) (2007) 1477-1481. https://doi.org/10.1134/S0036024407090257
  12. L.J. Kangas, P.E. Keller, E.R. Siciliano, R.T. Kouzes, J.H. Ely, The use of artificial neural networks in PVT-based radiation portal monitors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 587 (2-3) (2008) 398-412. https://doi.org/10.1016/j.nima.2008.01.065
  13. J. He, X. Tang, P. Gong, P. Wang, L. Wen, X. Huang, L. Gao, Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network, Ann. Nucl. Energy 112 (2018) 1-8. https://doi.org/10.1016/j.anucene.2017.09.032
  14. C. Bobin, O. Bichler, V. Lourenco, C. Thiam, M. Thevenin, Real-time radionu- clide identification in g-emitter mixtures based on spiking neural network, Appl. Radiat. Isot. 109 (2016) 405-409. https://doi.org/10.1016/j.apradiso.2015.12.029
  15. M. Kamuda, J. Stinnett, C.J. Sullivan, Automated isotope identification algorithm using artificial neural networks, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1858-1864. https://doi.org/10.1109/TNS.2017.2693152
  16. S.M. Galib, Applications of machine learning in nuclear imaging and radiation detection, 2019.
  17. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929-1958.
  18. D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: ICLR 2015 : International Conference on Learning Representations 2015, 2015.
  19. K. Hu, Z. Zhang, X. Niu, Y. Zhang, C. Cao, F. Xiao, X. Gao, Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function, Neurocomputing 309 (2018) 179-191. https://doi.org/10.1016/j.neucom.2018.05.011
  20. Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168. https://doi.org/10.1016/j.anucene.2014.08.058
  21. Gamma Library. Retrieved June 22, 2020, from https://www.nucleonica.com/Application/GammaLibrary.aspx.
  22. J. Kim, K. Park, G. Cho, Multi-radioisotope identification algorithm using an artificial neural network for plastic gamma spectra, Appl. Radiat. Isot. 147 (2019) 83-90. https://doi.org/10.1016/j.apradiso.2019.01.005
  23. S. Jhung, S. Hur, G. Cho, I. Kwon, A neural network approach for identification of gamma-ray spectrum obtained from silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954 (2020), 161704. https://doi.org/10.1016/j.nima.2018.12.019
  24. C. Kim, D. Kim, Y. Lee, C. Park, M.N. Ullah, D. Kim, J.Y. Yeom, Radiation resistance and temperature dependence of Ce:GPS scintillation crystal, Radiat. Phys. Chem. 183 (2021), 109396. https://doi.org/10.1016/j.radphyschem.2021.109396