• 제목/요약/키워드: shell foundation

검색결과 92건 처리시간 0.02초

성인 남성용 런닝형 니퍼패턴 개발 (A Study on the Running Type Nipper Pattern Development for Adult men)

  • 조평훈;손후조;나미향
    • 한국생활과학회지
    • /
    • 제16권3호
    • /
    • pp.577-585
    • /
    • 2007
  • This research aimed for 20 latter man whose body shape of torso alters remarkably to develop nipper pattern of running type considered characteristic of body shape of 20 latter man to keep rather balanced body shape against middle age when body shape changes extremely. 1. running type nipper pattern design. Pattern of running, lining and nipper were designed by flattening surface shell. A basis line of running pattern is completed by applying reduction ratio after 3 times of modification & complement based on surface shell. Nipper pattern is designed with design line set by a plaster cast based on running pattern line. Lining pattern is designed with lining design line set by a plaster cast based on running type outside material and nipper pattern. 2. Functional evaluation of research and commercial nipper. Functional inspection through dress test was applied 5point evaluation method and the result of functional inspection on the sight of a wearer is that research nipper(running reduction ratio 15%, nipper reduction ratio 18%) averaged more 4.8point but commercial nipper averaged less 1.8point in the aspect of 20 items such as wear sensibility, motional function and external appearance aesthetic. Research running type nipper scored high in order of motional function, looks of side, back, front and whole and wear sensibility. Functional inspection in the point of view of an observer is that research nipper(running reduction ratio 15%, nipper reduction ratio 18%) averaged over 4.8point and commercial nipper averaged under 1.9point in 17 items of external appearance beauty. Research running type nipper marked high in order of looks of back, whole, front and side.

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 - (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제38권5호
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로- (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 - (An analysis of the farm silo supported by ground)

  • 조진구;조현영
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

Optimization approach applied to nonlinear analysis of raft-pile foundations

  • Tandjiria, V.;Valliappan, S.;Khalili, N.
    • Structural Engineering and Mechanics
    • /
    • 제7권6호
    • /
    • pp.533-550
    • /
    • 1999
  • Optimal design of raft-pile foundations is examined by combining finite element technique and the optimization approach. The piles and soil medium are modeled by three dimensional solid elements while the raft is modelled by shell elements. Drucker-Prager criterion is adopted for the soil medium while the raft and the piles are assumed to be linear elastic. For the optimization process, the approximate semi-analytical method is used for calculating constraint sensitivities and a constraint approximation method which is a combination of the extended Bi-point approximation and Lagrangian polynomial approximation is used for predicting the behaviour of the constraints. The objective function of the problem is the volume of materials of the foundation while the design variables are raft thickness, pile length and pile spacing. The generalized reduced gradient algorithm is chosen for solving the optimization process. It is demonstrated that the method proposed in this study is promising for obtaining optimal design of raft-pile foundations without carrying out a large number of analyses. The results are also compared with those obtained from the previous study in which linear analysis was carried out.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

지반위에 놓인 콘크리트 슬래브의 수직하중에 대한 슬래브 하부의 수평 저항의 영향 분석 (Effect of Horizontal Resistance at Slab Bottom on Behavior of Concrete Slabs-on-Grade under Vertical Loads)

  • 심재수;김성민
    • 한국도로학회논문집
    • /
    • 제7권4호
    • /
    • pp.141-150
    • /
    • 2005
  • 지반위에 놓인 콘크리트 슬래브가 수직 하중을 받을 때 지반의 전단저항과 슬래브 하부와 지반과의 마찰 등에 의해 생기는 슬래브 하부의 수평저항을 고려하여 지반위에 놓인 콘크리트 슬래브의 거동을 분석하였다. 슬래브 하부의 수평 저항을 고려하기 위한 해석 공식을 유도하였고 퓨리에변환을 이용한 변환영역에서 이러한 공식의 해를 구하였다. 또한 판요소와 쉘요소를 이용한 유한요소법에 의한 모델을 개발하여 수치 해석 결과도 도출하였다. 이러한 해석 공식과 수치해석 모델을 이용한 해석 결과를 비교 분석하였고 매우 비슷한 결과가 도출되는 것을 알 수 있었다. 콘크리트 슬래브의 응력 분포에 슬래브 하부의 수평저항이 미치는 민감성을 여러 가지의 다른 슬래브의 두께, 탄성계수, 그리고 지반의 수직탄성계수 등을 고려하여 분석하였다. 해석 결과에서 슬래브 하부의 수평 저항은 슬래브의 응력에 매우 큰 영향을 미칠 수 있다는 것을 발견하였다.

  • PDF

Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.33-46
    • /
    • 2024
  • The present research delves into the analysis of nonlinear free and forced vibrations of porous functionally graded (FG) shallow shells reinforced with oblique stiffeners, which are embedded in a nonlinear elastic foundation (NEF) subjected to external excitation. Two distinct types of PFG shallow shells, characterized by even and uneven porosity distribution along the thickness direction, are considered in the research. In order to model the stiffeners, Lekhnitskii's smeared stiffeners technique is implemented. With the stress function and first-order shear deformation theory (FSDT), the nonlinear model of the oblique stiffened shallow shells is established. The strain-displacement relationships for the system are derived via the FSDT and utilization of the von-Kármán's geometric assumptions. To discretize the nonlinear governing equations, the Galerkin method is employed. The model such developed allows analysis of the effects of the stiffeners with various angles as desired, in addition to the quantitative investigation on the influence of the surrounding nonlinear elastic foundations. To numerically solve the problem of vibrations, the 4th-order P-T method is used, as this method, known for its enhanced accuracy and reliability, proves to be an effective choice. The validation of the present research findings includes a comprehensive comparison with outcomes documented in existing literature. Additionally, a comparative analysis of the numerical results against those obtained using the 4th Runge-Kutta method is performed. The impact of stiffeners with varying angles and material parameters on the vibration characteristics of the present system is also explored. The researchers and engineers working in this field may use the results of this study as benchmarks in their design and research for the considered shell systems.

고속철도교량의 새로운 3차원 유한요소 해석모델의 개발 (Development of a New Three-dimensional Finite Element Analysis Model of High-speed Railway Bridges)

  • 송명관;한인선;김선훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.444-451
    • /
    • 2003
  • In this study, a new three-dimensional finite element analysis model of high-speed railway bridges considering train-bridge interaction, in which various improved finite elements are used for modeling structural members, is proposed. The box-type bridge deck of a railway bridge is modeled by the NFS(Nonconforming Flat Shell) elements with 6 degrees of freedom. Track structures are idealized using the beam finite elements with the offset of beam nodes and those on Winkler foundation with two parameters. And, the vehicle model devised for a high-speed train is employed, which has an articulated bogie system. By Lagrange's equations of motion, the equations of motion of a bridge-train system can be formulated. Finally, by deriving the equations of the forces acting on a bridge considering bridge-train interaction the complete system matrices of total bridge-train system can be constructed. As numerical examples of this study, 2-span PC box-girder bridge is analyzed and results are compared with experimental results.

  • PDF

A General approach to the wrinkling instability of sandwich plates

  • Vonach, Walter K.;Rammerstorfer, Franz G.
    • Structural Engineering and Mechanics
    • /
    • 제12권4호
    • /
    • pp.363-376
    • /
    • 2001
  • Sandwich plates are widely used in lightweight design due to their high strength and stiffness to weight ratio. Due to the heterogeneous structure of sandwich plates, they can exhibit local instabilities (wrinkling), which lead to a sudden loss of stiffness in the structure. This paper presents an analytical solution to the wrinkling problem of sandwich plates. The solution is based on the Rayleigh-Ritz method, by assuming an appropriate deformation field. In contrast to the other approaches up to now, this model takes arbitrary and different orthotropic face layers, finite core thickness and orthotropic core material into account. This approach is the first to cover the wrinkling of unsymmetric sandwiches and sandwiches composed of orthotropic FRP face layers, which are most common in advanced lightweight design. Despite the generality of the solution, the computational effort is kept within bounds. The results have been verified using other analytical solutions and unit cell 3D FE calculations.