• Title/Summary/Keyword: shedding

Search Result 999, Processing Time 0.023 seconds

Flow control downstream of a circular cylinder by a permeable cylinder in deep water

  • Gozmen, Bengi;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.389-404
    • /
    • 2014
  • The flow characteristics of a circular cylinder surrounded by an outer permeable cylinder were experimentally investigated using Particle Image Velocimetry Technique in deep water flow. In order to consider the effects of diameter and porosity of the outer cylinder on flow structures of the inner cylinder, five different outer cylinder diameters (D=37.5, 52.5, 60, 75 and 90 mm) and eight different porosities (${\beta}$=0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.85) were selected. During the experiments, the diameter of inner cylinder was kept constant as d=30 mm. The depth-averaged free-stream velocity was adjusted as U=0.156 m/s, which corresponds to the Reynolds number of Re=5000 based on the inner cylinder diameter. It has been concluded that both the outer permeable cylinder diameter and the porosity have important influences on the attenuation of vortex shedding in the wake region. The presence of outer permeable cylinder decreases the magnitude of Reynolds shear stress and turbulent kinetic energy compared to the bare cylinder case. Moreover, the spectral analysis of vortex shedding frequency has revealed that the dominant frequency of vortex shedding downstream of the cylinder arrangement also reduces substantially due to the weakened Karman shear layer instability.

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

Multi-level Load Shedding Scheme to Increase Spatial Data Stream Query Accuracy (공간 데이터 스트림 질의 정확도 향상을 위한 다단계 부하제한 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8370-8377
    • /
    • 2015
  • In spatial data stream management systems, it is needed appropriate load shedding algorithm because real-time input spatial data streams could exceed the limitation of main memory. However previous researches, lack regard for input ratio and spatial utilization rates of spatial data streams, or the characteristics of data source which generates data streams with spatial information efficiently, can lead to decrease the performance and accuracy of spatial data stream query. Therefore, multi-level load shedding scheme for spatial data stream management systems is proposed to increase the spatial query performance and accuracy. This proposed scheme limits overloads in relation to the input rate and the characteristics of data source first, and then, if needed, query data representing low query participation probability based on spatial utilizations are dropped relatively. Our experiments show that the proposed method could decrease load shedding frequency for previous researches by more than 11% despite query results accuracy and query performance are superior at 0.04% and 3%.

Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder (주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

Load Shedding Method based on Grid Hash to Improve Accuracy of Spatial Sliding Window Aggregate Queries (공간 슬라이딩 윈도우 집계질의의 정확도 향상을 위한 그리드 해쉬 기반의 부하제한 기법)

  • Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Chung, Weon-Il;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2009
  • As data stream is entered into system continuously and the memory space is limited, the data exceeding the memory size cannot be processed. In order to solve the problem, load shedding methods which drop a part of data to prevent exceeding the storage space have been researched. Generally, a traditional load shedding method uses random sampling with optimized rate according to data deviation. The method samples data not to distinguish those used in spatial query because the method uses only a random sampling with optimized rate according to data deviation. Therefore, the accuracy of query was reduced in u-GIS environment including spatial query. In this paper, we researched a new load shedding method improving accuracy of the query in u-GIS environment which runs spatial query and aspatial query simultaneously. The method uses a new sampling method that samples data having low probability used in query. Therefore proposed method improves spatial query accuracy and query processing speed as applying spatial filtering operation to sampling operator.

  • PDF

Determination of Reasonable Amounts of Under-Voltage Load Shedding for 765kV T/L According to the Power System Reliability Standards (전력계통 신뢰도 기준 분석을 통한 765kV 선로사고에 대한 부하차단 적정량 산정에 관한 연구)

  • Yoo, Je-Ho;Hur, Jin;Cha, Jun-Min;Kim, Tae-Gyun;Kang, Bu-Il;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.845-851
    • /
    • 2015
  • Load shedding is a last measure to avoid nationwide cascading collapses of power system by removing the pre-determined amount of loads from the main grid. In Korea, SPS(Special Protection System) is prepared to keep the power system stability from the extreme contingency of the critical transmission line losses. Among them, we need to pay attention to 765kV T/L’s because they have great influence on the total system stability. According to the present SPS operating guide, the total loads of 1,500MW should be removed through 2 step under-voltage load shedding(UVLS) scheme in case of 765kV T/L’s contingencies. However, it is not clear to defined how to determine the typical load reduction amounts for each case. This paper proposes a method to estimate appropriate amounts of load shed for 765kV T/L’s contingencies by analyzing the relevant national and international standards.

Effects of Fertilizer Levels and Plant Densities on Flowering and Bolling in Cotton (시비량과 재식밀도가 목화의 개화 및 결삭에 미치는 영향)

  • 김상곤;박홍재;성병열;정동희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.436-441
    • /
    • 1992
  • This study was carried out to discuss the influences of the different fertilizer levels and plant densities on the flowering and balling in cotton in Mokpo Branch Station, Crop Experiment Station in 1991. The cotton flowered 67% before Aug. 25 which is the limit date of picked-cotton harvest, and the ratio of flowering for stalk-cut cotton was 30%. The 1.5 times fertilizer levels and the 70cm row density had more flower buds, flowers and bolls per m$^2$ than any other treatment plot. The crop growing was bad in dense planting due to the nutrient deficiency. The flowering ratio to flower bud was about 70%, and the balling ratio to flower numbers was about 48%. The bolling ratio was lower in the case of more flower number. The shedding ratio of flower buds was about 30% in average and showed increasing tendency by dense planting. It was observed that the higher ratio of bud shedding tended to accompany with shedding the lower ratio of boll shedding.

  • PDF

DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary

  • Zhang, Zhimeng;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.465-474
    • /
    • 2020
  • Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a Reynolds number Ren= 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, where D is the cylinder diameter. The cylinder yaw angle (α) is varied from 0° to 60° with an increment of 15°. The main focus is given on the influence of α on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) validity. The vortex shedding pattern, contingent on α, is parallel at α=0°, negatively-yawed at α ≤ 15° and positively-yawed at α ≥ 30°. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows is in the opposite and same directions of α, respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the midspan, regardless of α. The RMS lift coefficient CL,rms exhibits asymmetry along the span when α ≠ 0°, maximum CL,rms occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for α = 0° - 60° examined.

Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall (벽면에 근접한 사각주 후면의 와류 유동장 수동제어)

  • Lee, Bo-Sung;Kim, Tae-Yoon;Lee, Do-Hyung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Unsteady vortex shedding behind a rectangular cylinder near a wall influences both increasing of drag and dynamic stability of heavy vehicle, bridge or building. Incompressible Averaged Navier-Stokes equation with modified ${\varepsilon}-SST$ turbulence model is adapted for investigating the flow field between the rectangular cylinder and the wall. In case the vortex shedding happens, not only the averaged maximum velocity is higher than other cases, but the position of the maximum velocity is closer to the lower surface of rectangular cylinder. On this study, it is confirmed that the vortex shedding behind a rectangular cylinder can be suppressed by the passive control method added by horizontal and vertical fences to the lower surface of rectangular cylinder.

Load Shedding via Predicting the Frequency of Tuple for Efficient Analsis over Data Streams (효율적 데이터 스트림 분석을 위한 발생빈도 예측 기법을 이용한 과부하 처리)

  • Chang, Joong-Hyuk
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.755-764
    • /
    • 2006
  • In recent, data streams are generated in various application fields such as a ubiquitous computing and a sensor network, and various algorithms are actively proposed for processing data streams efficiently. They mainly focus on the restriction of their memory usage and minimization of their processing time per data element. However, in the algorithms, if data elements of a data stream are generated in a rapid rate for a time unit, some of the data elements cannot be processed in real time. Therefore, an efficient load shedding technique is required to process data streams effcientlv. For this purpose, a load shedding technique over a data stream is proposed in this paper, which is based on the predicting technique of the frequency of data element considering its current frequency. In the proposed technique, considering the change of the data stream, its threshold for tuple alive is controlled adaptively. It can help to prevent unnecessary load shedding.