• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.03 seconds

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF

Evaluation of Lateral Load Resistance Capacity of a High-rise Shear Wall Apartment Based on Elasto-plastic Analaysis (정적 탄소성 해석에 의한 고층 벽식 아파트의 수평내력 검토)

  • 전대한;강호근;조한욱;이정원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.31-40
    • /
    • 1998
  • The purpose of this study is to investigate static elastoplastic behaviour and estimate ultimate resistance capacity of a high-rise apartment shear wall system subjected to a vertical distribution of lateral loading along the height. A typical 25-story two unit plan apartment is selected as a representive model. For the analysis, the pushover analysis is adopted to estimate initial elastic stiffness, post-yielding stiffness and story shear yield resistance level on each story of the structure through three-dimensional nonlinear analysis program-CANNY. In the result of elastoplastic analysis, it is observed that the yield strength of building structures is 1.6 times larger than required lateral design strength.

  • PDF

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

  • Marzec, Ireneusz;Skarzynski, Lukasz;Bobinski, Jerzy;Tejchman, Jacek
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.585-612
    • /
    • 2013
  • The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Application Studies on Structural Modal Identification Toolsuite for Seismic Response of Shear Frame Structure (SMIT를 활용한 지진하중을 받는 전단 구조물의 응답모드 특성에 관한 연구)

  • Chang, Minwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs

  • Nezamoleslami, Reza;Khadem, Siamak E.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.249-264
    • /
    • 2017
  • In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.

Properties and particles dispersion of biodegradable resin/clay nanocomposites

  • Okada, Kenji;Mitsunaga, Takashi;Nagase, Youichi
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • In this study, two types of biodegradable resins-based clay nanocomposites, in which organic montmorillonite clay was filled, were prepared by the direct melt blending method. In order to characterize the nanocomposite structure, wide-angle X-ray diffraction (WAXD) and TEM observation were performed. Characterization of the nanocomposites shows that intercalated and partially exfoliated structures were generated by the melt blending method. Mechanical and rheological properties of the nanocomposites were measured respectively. For the mechanical properties, there were improvements in tensile strength and Young's modulus of the nanocomposites due to the reinforcement of nanoparticles. The rheological behaviors of the nanocomposites were significantly affected by the degree of the dispersion of the organoclay. The storage modulus of the nanocomposites was measured and the degree of the dispersion of the organoclay was evaluated from the value of the terminal slope of the storage modulus. In addition, the quantity of the shear necessary for making the nanocomposite for melt intercalation method was estimated from the relationship between the value of the terminal slope of the storage modulus and the applied shear.

Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade (1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석)

  • Cho Bong-Hyun;Lee Chang-Su;Choi Sung-Ok;Ryu Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF