• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.028 seconds

Simulation of Woody Leaf Netted Venation Based on Optimization Technique (최적화기법에 의한 나뭇잎 그물맥 시뮬레이션)

  • Chen, Lei;Li, Weizheng;Jang, Gang Won;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This study attempts to simulate the structure of a woody leaf netted venation system by using topology optimization techniques. Based on finite element method (FEM) analysis of an incompressible fluid, a topology optimal design is applied to those woody leaf netted venation models. To solve the transverse shear locking problem of a thin plate caused by the Mindlin-Reissner plate model where a leaf netted venation is assumed to be a thin plate, a P1-nonconforming element and selective reduced integration are employed. Topology optimal design is applied to multiple physical domains. Combined with the Darcy-Stokes flow problems and extended to the optimal design of fluid channels, the multiple physical models of the flow system are analyzed and venation patterns of leafs are simulated. The calculated optimal shapes are compared with the natural shapes of woody leaf venation patterns. This interdisciplinary approach may improve our understanding of the leaf venation system.

Reconstruction for the Soft Tissue Defect of Heel using Free Lateral Arm Neurosensory Flap (유리 외측 상박 감각신경 피판술을 이용한 종부 연부조직 결손의 재건)

  • Kim, Dong-Churl;Kim, Sang-Soo;Ha, Dae-Ho;Yoo, Hee-Jun;Lee, Dong-Hoon
    • Archives of Reconstructive Microsurgery
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • Soft tissue defect on heel area of the foot present difficult problems particularly because of anatomic property of plantar surface of the foot. There is a paucity of available local tissue in the foot for coverage. In addition to having little expandable tissue, the foot's plantar surface has a unique structure, making its replacement especially challenging. Plantar skin is attached to the underlying bone by fibrous septa, preventing shear of the soft-tissue surfaces from the underlying skeleton. Plantar surface of foot is in constant contact with the environment. Protective sensibility also would be maintained or restored in the ideal reconstruction. So the ideal flap for reconstruction of the heel should include thin, durable hairless skin with potential for reinnervation. The aim of this article is to present a clinical experience of free lateral arm neurosensory flap for reconstruction of the heel. From March 1995 to December 1997, a total 16 lateral arm free flaps were performed to soft tissue defects on the weight-bearing area of the hindfoot. we used tibial nerve as recepient nerve in 11 and calcaneal branch of tibial nerve in 5 for restoration of sensibility of flap. All cases survived completely. A static two-point discrimination of 14 to 34mm was detected in the flap. Radial nerve palsy which was caused by hematoma in donor site occured in one case, but recorverd in 3 weeks later completely. In conclusion, the lateral arm free flaps are versatile, reliable and sensible cutaneous flap and especially indicated for soft tissue defect on plantar surface of the hindfoot which are not good indications for other better-known flaps.

  • PDF

Comparison of prediction accuracy for genomic estimated breeding value using the reference pig population of single-breed and admixed-breed

  • Lee, Soo Hyun;Seo, Dongwon;Lee, Doo Ho;Kang, Ji Min;Kim, Yeong Kuk;Lee, Kyung Tai;Kim, Tae Hun;Choi, Bong Hwan;Lee, Seung Hwan
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.438-448
    • /
    • 2020
  • This study was performed to increase the accuracy of genomic estimated breeding value (GEBV) predictions for domestic pigs using single-breed and admixed reference populations (single-breed of Berkshire pigs [BS] with cross breed of Korean native pigs and Landrace pigs [CB]). The principal component analysis (PCA), linkage disequilibrium (LD), and genome-wide association study (GWAS) were performed to analyze the population structure prior to genomic prediction. Reference and test population data sets were randomly sampled 10 times each and precision accuracy was analyzed according to the size of the reference population (100, 200, 300, or 400 animals). For the BS population, prediction accuracy was higher for all economically important traits with larger reference population size. Prediction accuracy was ranged from -0.05 to 0.003, for all traits except carcass weight (CWT), when CB was used as the reference population and BS as the test. The accuracy of CB for backfat thickness (BF) and shear force (SF) using admixed population as reference increased with reference population size, while the results for CWT and muscle pH at 24 hours after slaughter (pH) were equivocal with respect to the relationship between accuracy and reference population size, although overall accuracy was similar to that using the BS as the reference.

An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames (미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구)

  • Choe, Gyeong-Min;Jang, In-Gap;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.

Synthesis and Properties of Exfoliated Poly(methyl methacrylate-co-acrylonitrile)/Clay Nanocomposites via Emulsion Polymerization

  • Mingzhe Xu;Park, Yeong-Suk;Wang, Ki-Hyun;Kim, Jong-Hyun;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.410-417
    • /
    • 2003
  • Poly(methyl methacrylate-co-acrylonitrile) [P(MMA-co-AN)]/Na-MMT nanocomposites were synthesized through emulsion polymerization with pristine Na-MMT. The nanocomposites were exfoliated up to 20 wt% content of pristine Na-MMT relative to the amount of MMA and AN, and exhibited enhanced storage moduli, E', relative to the neat copolymer. The exfoliated morphology of the nanocomposite was confirmed by XRD and TEM. 2-Acryla-mido-2-methyl-1-propane sulfonic acid (AMPS) widened the galleries between the clay layers before polymerization and facilitated the comonomers, penetration into the clay to create the exfoliated nanocomposites. The onset of the thermal decomposition of the nanocomposites shifted to a higher temperature as the clay content increased. By calculating areas of tan$\delta$ of the nanocomposites, we observed that the nanocomposites show more solid-like behavior as the clay content increases. The dynamic storage modulus and complex viscosity increased with clay content. The complex viscosity showed shear-thinning behavior as the clay content increased. The Young's moduli of the nano-composites are higher than that of the neat copolymer and they increase steadily as the silicate content increases, as a result of the exfoliated structure at high clay content.

Strengthening of an Existing Bridge for Achievement of Seismic Performance (내진성능 확보를 위한 기존교량의 보강)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • After introduction of the earthquake resistant design code, it is required to achieve seismic performance of existing bridges as well as earthquake resistant design of new bridges. The achievement of seismic performance for existing bridges should satisfy the no collapse requirement based on the basic concept of earthquake resistant design, therefore, various methods with different strengthening scale should be suggested according to bridge types and importance categories. At present for typical bridges, most studied and applied strengthening methods are bearing change, pier strengthening and shear key installation for improvement of seismic performance. In this study a typical existing bridge, for which earthquake resistant design is not considered, is selected as an analysis bridge. Design changes are carried out to satisfy the no collapse requirement by way of the ductile failure mechanism and seismic performances are checked. It is shown that the seismic performance of existing bridges can be achieved by way of redesign of bridge system, e.g. determination of pier design section for substructure and change of bearing function for connections between super/sub-structure.

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

Analysis of Influential Factors on Ploughing Failure of Footwall Slope (Footwall 비탈면의 ploughing 파괴에 미치는 영향인자 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The limit equilibrium method (LEM) is commonly used for slope design and stability analysis because it is easy to simulate slope and requires short calculating time. However, LEM cannot adequately simulate ploughing failure in a footwall slope with a joint set dipping parallel with slope, e.g. bedding joint set. This study performed parametric study to analyze the influence factors on ploughing failure using UDEC which is a commercial two-dimensional DEM (Distinct Element Method)-based numerical program. The influence of joint structure and properties on stability of a footwall slope against ploughing failure was investigated, and the factor of safety was estimated using the shear strength reduction method. It was found that the stability of footwall slope against ploughing failure strongly relies on dip angle of conjugate joint, and the critical bedding joint spacing and the critical length of slab triggering ploughing failure are also affected by dip angle of conjugate joint. The results obtained from this study can be used for effective slope design and construction including reinforcement.

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF