• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.036 seconds

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

Failure characteristics of combined coal-rock with different interfacial angles

  • Zhao, Tong-Bin;Guo, Wei-Yao;Lu, Cai-Ping;Zhao, Guang-Ming
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • In order to investigate the influence of the interfacial angel on failure characteristics and mechanism of combined coal-rock mass, 35 uniaxial/biaxial compressive simulation tests with 5 different interfacial angels of combined coal-rock samples were conducted by PFC2D software. The following conclusions are drawn: (1) The compressive strength and cohesion decrease with the increase of interfacial angle, which is defined as the angle between structure plane and the exterior normal of maximum principal plane, while the changes of elastic modulus and internal friction angle are not obvious; (2) The impact energy index $K_E$ decreases with the increase of interfacial angle, and the slip failure of the interface can be predicted based on whether the number of acoustic emission (AE) hits has multiple peaks or not; (3) There are four typical failure patterns for combined coal-rock samples including I (V-shaped shear failure of coal), II (single-fracture shear failure of coal), III (shear failure of rock and coal), and IV (slip rupture of interface); and (4) A positive correlation between interfacial angle and interface effect is shown obviously, and the interfacial angle can be divided into weak-influencing scope ($0-15^{\circ}$), moderate-influencing scope ($15-45^{\circ}$), and strong-influencing scope (> $45^{\circ}$), respectively. However, the confining pressure has a certain constraint effect on the interface effect.

The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil

  • Lee, Cheol-Ju;Jeon, Young-Jin;Kim, Sung-Hee;Park, Inn-Joon
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.553-570
    • /
    • 2016
  • A series of three-dimensional (3D) parametric finite element analyses have been performed to study the influence of the relative locations of pile tips with regards to the tunnel position on the behaviour of single piles and pile groups to adjacent tunnelling in weathered soil. When the pile tips are inside the influence zone, which considers the relative pile tip location with respect to the tunnel position, tunnelling-induced pile head settlements are larger than those computed from the Greenfield condition. However, when the pile tips are outside the influence zone, a reverse trend is obtained. When the pile tips are inside the influence zone, the tunnelling-induced tensile pile forces mobilised, but when the pile tips are outside the influence zone, compressive pile forces are induced because of tunnelling, depending on the shear stress transfer mechanism at the pile-soil interface. For piles connected to a cap, tensile and compressive forces are mobilised at the top of the centre and side piles, respectively. It has been shown that the increases in the tunnelling-induced pile head settlements have resulted in reductions of the apparent factor of safety up to approximately 43% when the pile tips are inside the influence zone, therefore severely affecting the serviceability of the piles. The pile behaviour, when considering the location of the pile tips with regards to the tunnel, has been analysed in great detail by taking the tunnelling-induced pile head settlements, axial pile forces, apparent factor of safety of the piles and shear transfer mechanism into account.

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

Analysis of Sandwich Plates with Composite Facings based on Zig-Zag Models (지그재그 모델에 의한 복합샌드위치평판의 해석)

  • Ji, Hyo Seon;Chang, Suk Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.749-758
    • /
    • 2000
  • This study presents a governing equations of bending behavior of sandwich plates with thick metal, polymer composite facings. Based on zig-zag models for through thickness deformations, the transverse shear deformation of composite facings is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated facings. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite facings to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated facings, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with metal, polymer matrix composite facings.

  • PDF

Finite Element Analysis and Experimental Verification for the Cold-drawing of a FCC-based High Entropy Alloy (FCC계 고엔트로피 합금의 냉간 인발 유한요소해석 및 실험적 검증)

  • Cho, H.S.;Bae, S.J.;Na, Y.S.;Kim, J.H.;Lee, D.G.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.163-171
    • /
    • 2020
  • We present a multi-step cold drawing for a non-equiatomic Co10Cr15Fe25Mn10Ni30V10 high entropy alloy (HEA) with a simple face-centered cubic (FCC) crystal structure. The distribution of strain in the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires was analyzed by the finite element method (FEM). The effective strain was expected to be higher as it was closer to the surface of the wire. However, the reverse shear strain acted to cause a transition in the shear strain behavior. The critical effective strain at which the shear strain transition behavior is completely shifted was predicted to be 4.75. Severely cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires up to 96% of the maximum cross-sectional reduction ratio were successfully manufactured without breakage. With the assistance of electron back-scattering diffraction and transmission electron microscope analyses, the abundant deformation twins were found in the region of high effective strain, which is a major strengthening mechanism for the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wire.

End Distance of Single-shear Screw Connection in Cross Laminated Timber

  • Oh, Jung-Kwon;Kim, Gwang-Chul;Kim, Kwang-Mo;Lee, Jun-Jae;Hong, Jung-Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.746-752
    • /
    • 2017
  • Cross-laminated timber (CLT) is a relatively new engineered wood for timber construction. It is a great shear wall material. It was known that the shear performance of the CLT wall depends on the performance of connections. In connection, nail or screw has to be installed with a certain distance from the end of the timber. Current building code specifies the distance on the name of end distance. The end distance was decided as a minimum distance not to make splitting or tearing out in lumber or glued laminated timber. As a relatively new engineered wood, the end distance of CLT connection need to be identified because CLT is cross-wisely glued lumber products like plywood. Different from glued laminated timber or lumber, cross layer of CLT may prevent wood from splitting or tearing-out. As a result, the end distance of CLT was expected to be reduced than glued laminated timber. The shorter end distance may let more versatile connector design possible. In this study, prior to developing novel connection for CLT, the end distance of CLT connection was experimentally investigated to identify the end distance limitation. The experiments showed that the end distance can be reduced from 7D to 6D, in case of the tested CLT combination and screw in this study.

Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer (구리 질화막을 이용한 구리 접합 구조의 접합강도 연구)

  • Seo, Hankyeol;Park, Haesung;Kim, Gahui;Park, Young-Bae;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.55-60
    • /
    • 2020
  • The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.

Evaluation of Inelastic Performance of a Reinforced Concrete Shear Wall-Frame System Designed by Resizing Algorithms (재분배 기법 적용에 따른 철근 콘크리트 전단벽-골조 시스템의 비선형 특성 평가)

  • An, Jin-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational due to the simplicity and convenience of the method. The resizing algorithm can be practically and effectively applied to drift design of buildings. However, the researches on the change of inelastic behavior by the resizing algorithm has been insufficient. To identify the effect on the inelastic behavior of buildings by the resizing method, this study used the reinforced concrete shear wall-frame example. Through the application of the resizing method, the weights of shear wall in the lower class and the weights of columns and beams in the upper class increased respectively. And the initial stiffness of the building increased and the ductility of the buildings had similar with that of the initial structure.

Investigating the effects of confining pressure on graphite material failure modes and strength criteria

  • Yi, Yanan;Liu, Guangyan;Xing, Tongzhen;Lin, Guang;Sun, Libin;Shi, Li;Ma, Shaopeng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1571-1578
    • /
    • 2020
  • As a critical material in very/high-temperature gas-cooled reactors, graphite material directly affects the safety of the reactor core structures. Owing to the complex structures of graphite material in reactors, the material typically undergoes complex stress states. It is, therefore, necessary to study its mechanical properties, failure modes, and strength criteria under complex stress states so as to provide guidance for the core structure design. In this study, compressive failure tests were performed for graphite material under the condition of different confining pressures, and the effects of confining pressure on the triaxial compressive strength and Young's modulus of graphite material were studied. More specifically, graphite material based on the fracture surfaces and fracture angles, the graphite specimens were found to exhibit four types of failure modes, i.e., tension failure, shear-tension failure, tension-shear failure and shear failure, with increasing confining pressure. In addition, the Mohr strength envelope of the graphite material was obtained, and different strength criteria were compared. It showed that the parabolic Mohr-Coulomb criterion is more suitable for the strength evaluation for the graphite material.