DOI QR코드

DOI QR Code

Investigating the effects of confining pressure on graphite material failure modes and strength criteria

  • Yi, Yanan (School of Aerospace Engineering, Beijing Institute of Technology) ;
  • Liu, Guangyan (School of Aerospace Engineering, Beijing Institute of Technology) ;
  • Xing, Tongzhen (School of Aerospace Engineering, Beijing Institute of Technology) ;
  • Lin, Guang (School of Aerospace Engineering, Beijing Institute of Technology) ;
  • Sun, Libin (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Shi, Li (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Ma, Shaopeng (School of Aerospace Engineering, Beijing Institute of Technology)
  • Received : 2019.09.20
  • Accepted : 2019.12.05
  • Published : 2020.07.25

Abstract

As a critical material in very/high-temperature gas-cooled reactors, graphite material directly affects the safety of the reactor core structures. Owing to the complex structures of graphite material in reactors, the material typically undergoes complex stress states. It is, therefore, necessary to study its mechanical properties, failure modes, and strength criteria under complex stress states so as to provide guidance for the core structure design. In this study, compressive failure tests were performed for graphite material under the condition of different confining pressures, and the effects of confining pressure on the triaxial compressive strength and Young's modulus of graphite material were studied. More specifically, graphite material based on the fracture surfaces and fracture angles, the graphite specimens were found to exhibit four types of failure modes, i.e., tension failure, shear-tension failure, tension-shear failure and shear failure, with increasing confining pressure. In addition, the Mohr strength envelope of the graphite material was obtained, and different strength criteria were compared. It showed that the parabolic Mohr-Coulomb criterion is more suitable for the strength evaluation for the graphite material.

Keywords

References

  1. S.P. Jing, C. Zhang, J. Pu, H.Y. Jiang, H.H. Xia, F. Wang, X. Wang, 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10, Nucl. Sci. Tech. 27 (2016) 1-8. https://doi.org/10.1007/s41365-016-0013-x
  2. G. Singh, A. Fok, S. Mantell, Failure predictions for graphite reflector bricks in the very high temperature reactor with the prismatic core design, Nucl. Eng. Des. 317 (2017) 190-198. https://doi.org/10.1016/j.nucengdes.2017.03.037
  3. X.W. Zhou, Y.P. Tang, Z.M. Lu, J. Zhang, B. Liu, Nuclear graphite for high temperature gas-cooled reactors, N. Carbon Mater. 32 (2017) 193-204. https://doi.org/10.1016/S1872-5805(17)60116-1
  4. Z.X. Wu, D.C. Lin, D.X. Zhong, The design features of the HTR-10, Nucl. Eng. Des. 218 (2002) 25-32. https://doi.org/10.1016/S0029-5493(02)00182-6
  5. Z.X. Wu, The module HTGR development in China, Eng. Sci. 4 (2007) 59-67.
  6. X.W. Zhou, Y. Yang, J. Song, Z.M. Lu, J. Zhang, B. Liu, Y.P. Tang, Carbon materials in a high temperature gas-cooled reactor pebble-bed module, N. Carbon Mater. 33 (2018) 97-108. https://doi.org/10.1016/S1872-5805(18)60328-2
  7. A. Cosculluela, J. Farre, Uniaxial compressive behaviour of an isotropic graphite, J. Phys. IV 7 (1997) 471-476.
  8. R. Taylor, R.G. Brown, K. Gilchrist, E. Hall, A.T. Hodds, B.T. Kelly, F. Morris, The mechanical properties of reactor graphite, Carbon 5 (1967) 519-531. https://doi.org/10.1016/0008-6223(67)90029-2
  9. M.P. Hindley, M.N. Mitchell, D.C. Blaine, A.A. Groenwold, Observations in the statistical analysis of NBG-18 nuclear graphite strength tests, J. Nucl. Mater. 420 (2012) 110-115. https://doi.org/10.1016/j.jnucmat.2011.09.013
  10. A.R. Shahani, M.M. Nejadi, Investigation on the mechanical properties and fracture toughness of graphite, FFEMS 38 (2015) 1209-1218.
  11. A.P.G. Rose, M.O. Tucker, A fracture criterion for nuclear graphite, J. Nucl. Mater. 110 (1982) 186-195. https://doi.org/10.1016/0022-3115(82)90145-3
  12. X.J. Zhang, Y.N. Yi, H.B. Zhu, G.Y. Liu, L.B. Sun, L. Shi, H. Jiang, S.P. Ma, Measurement of tensile strength of nuclear graphite based on ring compression test, J. Nucl. Mater. 511 (2018) 134-140. https://doi.org/10.1016/j.jnucmat.2018.09.010
  13. J. Arzua, L.R. Alejano, G. Walton, Dilation in granite during servo-controlled triaxial strength tests, Int. J. Rock Mech. Min. 61 (2013) 43-56. https://doi.org/10.1016/j.ijrmms.2013.02.007
  14. S.Q. Yang, Y.Z. Jiang, W.Y. Xu, X.Q. Chen, Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression, Int. J. Solids Struct. 45 (2008) 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023
  15. M.Q. You, Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses, Int. J. Rock Mech. Min. 47 (2010) 195-204. https://doi.org/10.1016/j.ijrmms.2009.12.006
  16. B. Tarasov, Y. Potvin, Universal criteria for rock brittleness estimation under triaxial compression, Int. J. Rock Mech. Min. 59 (2013) 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
  17. B. Haimson, A. Bobet, Introduction to suggested methods for failure criteria, Rock Mech. Rock Eng. 45 (2012) 973-974. https://doi.org/10.1007/s00603-012-0274-6
  18. J.F. Labuz, A. Zang, Mohr-Coulomb failure criterion, Rock Mech. Rock Eng. 45 (2012) 975-979. https://doi.org/10.1007/s00603-012-0281-7
  19. E. Eberhardt, The Hoek-Brown failure criterion, Rock Mech. Rock Eng. 45 (2012) 981-988. https://doi.org/10.1007/s00603-012-0276-4
  20. S. Priest, Three-dimensional failure criteria based on the HoekeBrown criterion, Rock Mech. Rock Eng. 45 (2012) 989-993. https://doi.org/10.1007/s00603-012-0277-3
  21. L.R. Alejano, Drucker-Prager criterion, Rock Mech. Rock Eng. 45 (2012) 995-999. https://doi.org/10.1007/s00603-012-0278-2
  22. S.A.B. Da Fontoura, Lade and modified Lade 3D rock strength criterion, Rock Mech. Rock Eng. 45 (2012) 1001-1006. https://doi.org/10.1007/s00603-012-0279-1
  23. C.D. Chang, B. Haimson, A failure criterion for rocks based on true triaxial testing, Rock Mech. Rock Eng. 45 (2012) 1007-1010. https://doi.org/10.1007/s00603-012-0280-8
  24. S.Q. Yang, Y.Z. Jiang, W.Y. Xu, X.Q. Chen, Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression, Int. J. Solids Struct. 45 (2008) 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023
  25. L. Yong, Effect analysis of confining pressure on Young's modulus, J. Chongqing Jianzhu Univ. 28 (2009) 246-249. In Chinese.
  26. W.R. Wawersik, W.F. Brace, Post failure behavior of a granite and a diabase, Rock Mech. 3 (1971) 61-85. https://doi.org/10.1007/BF01239627
  27. M.Q. You, Effect of confining pressure on the Young's modulus of rock specimen, Chin. J. Rock Mech. Eng. 22 (2003) 53-60. In Chinese. https://doi.org/10.3321/j.issn:1000-6915.2003.01.010
  28. V. Marinos, P. Marinos, E. Hoek, The geological strength index: applications and limitations, Bull. Eng. Geol. Environ. 64 (2005) 55-65. https://doi.org/10.1007/s10064-004-0270-5
  29. L. Zhang, A generalized three-dimensional Hoek-Brown, Rock Mech. Rock Eng. 41 (2008) 893-915. https://doi.org/10.1007/s00603-008-0169-8
  30. Q. Zhang, H. Zhu, L. Zhang, Modification of a generalized three-dimensional Hoek-Brown strength criterion, Int. J. Rock Mech. Min. 59 (2013) 80-96. https://doi.org/10.1016/j.ijrmms.2012.12.009
  31. E. Hoek, E.T. Brown, Practical estimates of rock mass strength, Int. J. Rock Mech. Min. 34 (1997) 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  32. P. Marinos, E. Hoek, Estimating the geotechnical properties of heterogeneous rock masses such as flysch, Bull. Eng. Geol. Environ. 60 (2001) 85-92. https://doi.org/10.1007/s100640000090
  33. C.G. Li, X.R. Ge, H. Zheng, S.L. Wang, Two-parameter parabolic Mohr strength criterion and its damage regularity, Key Eng. Mater. 306 (2006) 327-332. https://doi.org/10.4028/www.scientific.net/KEM.306-308.327