• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.027 seconds

Structural Performance of One-way Void Plywood Slab System with form work Pane (거푸집 패널이 부착된 1방향 중공슬래브의 구조 성능)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • In this study, we developed Void Plywood Slab (VPS) that improved the shape of existing hollow materials. Its performance was evaluated through one-way flexural and one-way shear tests using the developed VPS. As a result of the one-way flexural performance tests of VPS, the yield load value for FPS series(longitudinal direction specimens with hollow materials) was approximately 97.5% compared to FPS-00(without hollow materials) specimen. The tests showed that the yield load was not much different. In addition, FNS series(transverse direction specimens with hollow materials) also represented about 97% of FPS-00 specimen. The one-way flexural performance was shown to have little impact from void materials. Therefore, it is confirmed that the presented system is applicable to the VPS to the slab design. The results of the one-way shear performance tests of VPS showed that it was about 92% compared to the SS-00(without hollow materials) specimen. These results were somewhat insufficient for the SS-00 specimen. Shear strength equation is expressed as the sum of shear force by concrete and shear force by reinforcement. However, in the case of void slab, it is believed that the concrete section has been deleted by the void material. However, the strength of the structure applied to the shear design, as with the flexural design, is also applied to the design based on the yield load value.

Seismic response of active or semi active control for irregular buildings based on eigenvalues modification

  • Pnevmatikos, Nikos G.;Hatzigeorgiou, George D.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.647-664
    • /
    • 2014
  • A reduction of the response of irregular structures subjected to earthquake excitation by control devices equipped by suitable control algorithm is proposed in this paper. The control algorithm, which is used, is the pole placement one. A requirement of successful application of pole placement algorithm is a definition-selection of suitable poles (eigen-values) of controlled irregular structures. Based on these poles, the required action is calculated and applied to the irregular structure by means of control devices. The selection of poles of controlled irregular structure, is a critical issue for the success of the algorithm. The calculation of suitable poles of controlled irregular structure is proposed herein by the following procedure: a fictitious symmetrical structure is considered from the irregular structure, adding vertical elements, such as columns or shear walls, at any location where is necessary. Then, the eigen-values of symmetrical structure are calculated, and are forced to be the poles of irregular controlled structure. Based on these poles and additional damping, the new poles of the controlled irregular structure are calculated. By pole placement algorithm, the feedback matrix is obtained. Using this feedback matrix, control forces are calculated at any time during the earthquake, and are applied to the irregular structure by the control devices. This procedure results in making the controlled irregular structure to behave like a symmetrical one. This control strategy can be applied to one storey or to multi-storey irregular buildings. Furthermore, the numerical results were shown that with small amount of control force, a sufficient reduction of the response of irregular buildings is achieved.

Experimental Study on Seismic Resistance of A Unreinforced Cement Brick Building (비보강 시멘트벽돌 건물의 내진성능 실험연구)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.298-307
    • /
    • 2000
  • The behavior of a unreinforced cement brick building structure subjected to earthquake loading was experimentally investigated. for this four full size wall specimens were tested under quasi-static in-plane cyclic loading. Experimental observations indicate that the failure modes of unreinforced masonry walls are principally governed by sliding or/and rocking depending on the aspect ration and magnitude of axial loading. Also found was the flexure or shear mode resulting from the degraded strength of brick and/or mortar due to the cyclic loading effect.

  • PDF

A Study on the Wave Modes in Measurements of the Crack Depth of Concrete by Ultrasonic Waves (초음파에 의한 콘크리트의 균열깊이 측정에 있어서 음파모드에 관한 연구)

  • Han, E.K.;Lee, S.H.;Kim, J.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 1989
  • As the necessity of the safety diagnosis of the concrete structure, more reliable ultrasonic technique to qualify the concrete is required. In this study, the artificial surface crack depth is measured using several types of the ultrasonic probes. As results, the horizontal shear wave probe is most useful to determine the crack depth compared to the other probes. For the surface wave probe, the ultrasonic wave path is changed with the surface crack depth.

  • PDF

A Study on the Stability of Underground Structure considering the Orientation and the Stiffness of Discontinuity (불연속면의 경사와 강성을 고려한 지하구조물 안정성에 관한 연구)

  • Lee, Seung-Ho
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 1997
  • Underground structures show different behaviors depending upon the space and the mechanical characteristics of discontinuities, such as joints, beddings, faults and shear zone. Desingning the rock structeres without considering the significance of these discontinuities can lead to false conclusions. This paper includes study on the following topics; the numerical analysis of continuous rock and discontinuous rock around a tunnel, the influences on shotcrete moment and rock-bolt axial force of tunnel due to different joint orientation and stiffness.

  • PDF

A Study on the Nonlinear Analysis of R/C Frames Structures subjected to Static Loads (철근콘크리트뼈대 구조물의 정적 비선형 해석에 관한 연구)

  • 심종성;조민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.196-201
    • /
    • 1992
  • The purpose of this study is to develop the computer software for the nonlinear analysis of R/C frame structure under static loads. For this purpose, strain-rate dependant material model and physical element model considering both flexural and shear deformation are adopted and they are connected with 'TWO-D'which is commerical software for elastic structural analysis. The analytical results using the developed software are compared to the experiment results and they are generally satisfactory.

  • PDF

Equivalent Distributed Loads of HL Loading for Design of the Rahmen Bridges (라멘교 설계를 위한 HL 열차하중의 등치분포하중)

  • 진치섭;한상중;이홍주;김희성;조상제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.207-212
    • /
    • 1993
  • Rail carrying structures in international routes as well as domestic ones shall be designed to carry HL(High Speed Railway live Load) loads, The loads shall be placed in the most unfavourable position for the part of the structure in question. In general, influence lines may be used to determine the maximum bending moments and maximum shear forces in the reinforced concrete rahmen bridge structures. In this study, based on the finite element analysis, equivalent distributed loads of HL loading for design of the rahmen bridges are deterimined.

  • PDF

The Design Criteria of elastomeric Bearing for Highway Bridges (교량용 탄성받침의 설계압축응력에 대한 고찰)

  • 전규식;이병진;조해진;정명호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.481-488
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated Elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has !

  • PDF

Shear Behavior of Steel Eccentric Link Subject to Seismic Loads (철골 보 접합부재의 지진전단거동에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 1991
  • Concentrically braced frames are limited in their ability to absorb energy during an earthquake However by placing the bracing members eccentric to the beam column joints, an energy absorbing link unit is produced. The energy is absorbed by the link and / or columns deforming inelastically. Three models of a multistorey structure were analyzed using DRAIN-2D computer program .Three link lengths were used in the analyses, 7, 11 and 15 inches. The yield patterns are produced. However it is interesting to note the relative valuses of force and moment obtained.

  • PDF

Electrorheological Properties of Chitin and Chitosan Suspensions

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.