• Title/Summary/Keyword: shear resistance of joint

Search Result 109, Processing Time 0.026 seconds

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.

A Study on the Fabrication of the Laminated Wood Composed of Poplar and Larch (포푸라와 일본잎갈나무의 집성재 제조에 관한 연구)

  • Jo, Jae-Myeong;Kang, Sun-Goo;Kim, Ki-Hyeon;Chung, Byeong-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 1974
  • 1. Various gluing qualities applying Resorcinol Plyophen #6000 were studied on aiming the strength relationships of laminated woods resulted by single species [poplar (Populus deltoides), larch(Larix leptolepis)], mixed species of (poplar and larch), preservatives, treated poplar the scarf joint with mixed species of poplar and larch and the scarf joint treated with preservatives. 1. 1 On the block shear and on the DVL tension test, the mean wood failure ratio showed an excellent value i.e., above 65% and the tangential strength for larch was higher than that of radial, but it was reversed for poplar as shown in Tables 1 and 2. 1. 2 The lamina treated with Na-PCP reduced slightly the strength but the limited strength allowed for manufacturing laminated wood was not influenced by treating Na-PCP as shown in Tables 3 and 4. 1. 3 The safe scarf ratio in the plane scarf joint was above 1/12 for larch and 1/6 for poplar regard less of the chemical treatment or untreatment as shown in Tables. 5, 6, 7 and 8. 2. In the normal and boiled state, the gluing quality of the laminated wood composed of single[poplar (Populus deltoides), larch (Larix leptolepis)] and double species (poplar and larch) glued with Resorcinol Plyophen #6000 were measured as follow, and also represented the delamination of the same laminated wood. 2.1 The normal block shear strength of the straight and curved laminated wood (in life size) were more than three times of the standards adhesion strength. And, the value of the boiled stock was decreased to one half of the standard shear adhesion strength, but it was more than twice the standard strength for the boiled stock. Thus, it was recognized that the water resistance of the Resorcinol Plyophen #6000 was very high as shown in Tables 9 and 10. 2. 2 The delamination ratio of the straight and curved laminated woods in respect of their composition were decraesed, in turn, in the following order i. e., larch, mixed stock (larch+poplar) and poplar. The maximum value represented by the larch was 3.5% but it was below the limited value as shown in Table 11. 3. The various strengthes i.e., compressive, bending and adhesion obtainted by the straight laminaced wood which were constructed by five plies of single and double species of lamina i. e., larch (Larix leptolepis) and poplar (Populus euramericana), glued with urea resin were shown as follows: 3. 1 If desired a higher strength of architectural laminated wood composed of poplar (P) and larch (L), the combination of the laminas should be arranged as follows, L+P+L+P+L as shown in Table 12. 3.2 The strength of laminated wood composed of laminas which included pith and knots was conside rably decreased than that of clear lamina as shown Table 13. 3.3 The shear strength of the FPL block of the straight laminated wood constructed by the same species which were glued with urea adhesives was more than twice the limited adhesion strength, thus it makes possible to use it for interior constructional stock.

  • PDF

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Moment Resistance Performance Evaluation of Larch Glulam Joints using GFRP-reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 접합부의 모멘트저항 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • Instead of metal connector generally used on the structural glued laminated timber rahmen joints, the GFRP reinforced laminated plates combining veneer and GFRP (Glass Fiber Reinforced Plastic) and bonded type GFRP rod were used as the connectors. As a result of moment resistance performance evaluation on the joint part applied with these connectors, the yield moment of specimen using the GFRP reinforced laminated plates and GFRP rod pin was measured 4 % lower in comparison to the specimen (Type-1) using the metal connectors, but the initial rotational stiffness was measured 29% higher. Also, the yield moment and rotational stiffness of the specimen using the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin showed were measured 11% and 56% higher in comparison to the Type-1 specimen, showing the best performance. It was also confirmed through the failure shape and perfect elasto-plasticity analysis that it showed ductility behavior, not brittle fracture, from the shear resisting force by the pin and the bonding strength increased and the unification of member was carried out. On the other hand, in case of the specimen bonded with GFRP rod, it was impossible to measure the bonding performance or it was measured very low due to poor bonding.

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF