DOI QR코드

DOI QR Code

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar

앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험

  • Received : 2012.04.19
  • Accepted : 2012.09.25
  • Published : 2012.10.27

Abstract

PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

PSRC 기둥은 앵글을 콘크리트에 매입시킨 기둥으로, 단면의 외곽 코너에 배치되는 앵글이 기둥의 휨-압축에 저항하고, 횡철근은 기둥의 전단과 앵글-콘크리트 사이의 부착에 저항한다. 본 연구에서는 KBC 2009에 따라 PSRC 합성기둥의 휨, 전단, 부착 설계방법을 정립하고, 단순지지된 2/3 스케일의 PSRC 보와 SRC 보의 2점 가력 휨실험을 통하여 제안된 설계법을 검증하고 PSRC 합성기둥의 파괴특성을 분석하였다. 단면의 강재비와 횡철근 간격을 실험 변수로 고려하였다. 실험결과, KBC 2009으로 예측한 PSRC 합성기둥의 휨, 전단, 부착 강도는 실험결과와 잘 일치하였다. 고강도 앵글이 기둥 단면의 외곽에 배치되므로 PSRC 합성기둥은 동일한 강재비를 갖는 일반 SRC 합성기둥 단면에 비하여 매우 우수한 휨저항 성능을 나타냈다. 그러나 앵글과 콘크리트 사이의 부착강도가 충분히 학보되지 못한 경우 합성기둥 단면의 휨항복강도를 발휘하기 이전에 앵글의 부착파괴, 피복콘크리트 파괴, 횡철근의 파단 등이 발생하였다. 또한 앵글 용접성 및 인성이 부족할 경우 앵글-횡철근 용접부에서 앵글의 파단에 의해 실험체가 파괴되었다.

Keywords

References

  1. Morino, S. (1997) Recent Developments in Hybrid Structures in Japan-Research, Design and Construction Engineering Structures, Elsevier, Vol. 20, No. 4, pp.336-346.
  2. 김형근, 김명한, 조남규, 김상섭, 김상대(2009) yLRC 합성기둥의 압축강도에 관한 실험 연구, 한국강구조학회 논문집, 한국강구조학회, 제21권, 제5호, pp.545-552. Kim, H.G., Kim, M.H., Cho, N.G., Kim, S.S., and Kim, S.D. (2009) Experimental Study on the Compressive Strength of yLRC Composite Columns, Journal of Korean Society of Steel Construction, KSSC, Vol. 21, No. 5, pp.545-552 (in Korean).
  3. 김보람, 강성덕, 김형근, 김명한, 김상대(2008) 강재 영구거푸집을 사용한 yLRC 합성기둥의 내화성능 연구, 한국강구조학회논문집, 한국강구조학회, 제20권, 제3호, pp.365-375. Kim, B.R., Kang, S.D., Kim, H.G., Kim, M.H., and Kim, S.D. (2008) A Study on the Fire Resistance of yLRC Composite Columns with Steel Sheet Forms and Angles, Journal of Korean Society of Steel Construction, KSSC, Vol. 20, No. 3, pp.365-375 (in Korean).
  4. Campione, G. (2010) R/C Columns Strengthend by Means of Steel Angles and Battens: Testing, Modeling and Design, Studies and Researches, Politecnico di Milano, Vol. 30, pp.42-72.
  5. Monturi, R. and Piluso, V. (2009) Reinforced Concrete Columns Strengthened with Angles and Battens Subjected to Eccentric Load, Engineering Structures, Elsevier, Vol. 31, No. 2, pp.539-550 https://doi.org/10.1016/j.engstruct.2008.10.005
  6. 황현종, 엄태성, 박홍근, 이창남, 김형섭(2012) 고강도 앵글을 적용한 선조립 합성기둥의 압축 실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.361-369. Hwang, H.J., Eom, T.S., Park, H.G., Lee, C.N., and Kim, H.S. (2012) Compression Test for Prefabricated Composite Columns Using High- Strength Steel Angles, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No.5, pp.361-369 (in Korean). https://doi.org/10.7781/kjoss.2012.24.4.361
  7. 대한건축학회(2009) 건축구조설계기준 및 해설(KBC 2009) 기문당. AIK (2009) Korea building code and commentary - structural, Architectural Institute of Korea (in Korean)
  8. AISC D1 (2010) Structural Welding Code Steel, American Welding Society, USA.
  9. AISC 360 (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.

Cited by

  1. Experimental Evaluation on Seismic Performance of Filled Composite Beam - to - Forming Angle Composite Column Connections vol.20, pp.1, 2016, https://doi.org/10.5000/EESK.2016.20.1.071
  2. Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops vol.67, 2014, https://doi.org/10.1016/j.engstruct.2014.02.023
  3. Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column vol.14, pp.5, 2014, https://doi.org/10.5345/JKIBC.2014.14.5.487
  4. Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.635
  5. Cyclic Loading Test for TSC Beam - PSRC Column Connections vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.601
  6. Behavior and Performance Evaluation of Bolted End-Plate Splice of Angles Used in Encased Composite Columns vol.30, pp.4, 2018, https://doi.org/10.7781/kjoss.2018.30.4.225
  7. 볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험 vol.29, pp.2, 2012, https://doi.org/10.7781/kjoss.2017.29.2.147
  8. 볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험 vol.29, pp.3, 2017, https://doi.org/10.7781/kjoss.2017.29.3.249
  9. 볼트 체결형 강판-콘크리트 합성보의 형상 제안 vol.19, pp.7, 2012, https://doi.org/10.5762/kais.2018.19.7.305
  10. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2012, https://doi.org/10.7781/kjoss.2019.31.6.381