• 제목/요약/키워드: shear reinforcement details

검색결과 96건 처리시간 0.022초

Numerical Assessment of Reinforcing Details in Beam-Column Joints on Blast Resistance

  • Lim, Kwang-Mo;Shin, Hyun-Oh;Kim, Dong-Joo;Yoon, Young-Soo;Lee, Joo-Ha
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.87-96
    • /
    • 2016
  • This numerical study investigated the effects of different reinforcing details in beam-column joints on the blast resistance of the joints. Due to increasing manmade and/or natural high rate accidents such as impacts and blasts, the resistance of critical civil and military infrastructure or buildings should be sufficiently obtained under those high rate catastrophic loads. The beam-column joint in buildings is one of critical parts influencing on the resistance of those buildings under extreme events such as earthquakes, impacts and blasts. Thus, the details of reinforcements in the joints should be well designed for enhancing the resistance of the joints under the events. Parameters numerically investigated in this study include diagonal, flexural, and shear reinforcing steel bars. The failure mechanism of the joints could be controlled by the level of tensile stress of reinforcing steel bars. Among various reinforcing details in the joints, diagonal reinforcement in the joints was found to be most effective for enhancing the resistance under blast loads. In addition, shear reinforcements also produced favourable effects on the blast resistance of beam-column joints.

Head Reinforcement 인발강도를 위한 파괴 메캐니즘 (Failure Mechanism for Pull-Out Capacity of Headed Reinforcement)

  • 홍성걸;최동욱;권순영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.233-238
    • /
    • 2002
  • This study presents failure mechanisms for the pull-out strength of headed reinforcement for upper bound solution based on the limit theorem. The failure mechanisms to be presented follow the failure surface pattern of punching shear failure found in the joints of slab with a column. Several failure surfaces of the mechanisms have different characteristics for dissipation works and these mechanisms are able to interpret the role of bar details surrounding headed reinforcement.

  • PDF

고강도콘크리트를 사용한 R.C 보 부재의 부착할렬성상에 관한 실험적 연구 (An Experimental Study on the Bond Splitting Behavior of R.C Beams using High-Strength Concrete)

  • 곽노현;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.173-178
    • /
    • 1993
  • In order to quantify the effect of transverse reinforcement on the bond splitting behavior of reinforcement monotonic loading tests of 8 slmply beams were carried out. The reinforcing details and material properties were so determined that the bond splitting failure proceded the shear and flexural failure. A bond splitting strength derived from the experimental data and it accounts for following parameters: 1) Concrete Strength 2) Transverse reinforcement ratio and shape 3) Thickness of concrete cover 4)Deformation of reinforcement

  • PDF

비연성 RC 기둥의 하중-변형 응답 모사를 위한 모델 매개변수 제안 (Development of Model Parameter Prediction Equations for Simulating Load-deformation Response of Non-ductile RC Columns)

  • 이창석;한상환
    • 한국지진공학회논문집
    • /
    • 제23권2호
    • /
    • pp.119-129
    • /
    • 2019
  • Many reinforced concrete (RC) buildings constructed prior to 1980's lack important features guaranteeing ductile response under earthquake excitation. Structural components in such buildings, especially columns, do not satisfy the reinforcement details demanded by current seismic design codes. Columns with deficient reinforcement details may suffer significant damage when subjected to cyclic lateral loads. They can also experience rapid lateral strength degradation induced by shear failure. The objective of this study is to accurately simulate the load-deformation response of RC columns experiencing shear failure. In order to do so, model parameters are calibrated to the load-deformation response of 40 RC column specimens failed in shear. Multivariate stepwise regression analyses are conducted to develop the relationship between the model parameters and physical parameters of RC column specimens. It is shown that the proposed predictive equations successfully estimated the model parameters of RC column specimens with great accuracy. The proposed equations also showed better accuracy than the existing ones.

유공부 보강상세에 따른 철근콘크리트 유공 보의 전단 성능 평가 (Evaluation of Shear Performance of Reinforced Concrete Beams for Varying Reinforcement Details of Web Opening)

  • 김민준;이범식;김동환;김형국;이용준;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권4호
    • /
    • pp.19-26
    • /
    • 2018
  • 이 연구는 유공보강근의 형상에 따른 철근콘크리트 유공 보의 전단저항성능을 평가하기 위하여 4체의 실험체를 제작하여 전단실험을 수행하였다. 실험의 주요변수는 유공의 유무, 유공보강 유무, 유공 보강근의 형상으로 하였으며, 제안 유공 보강근은 시공성을 고려하여 사각형과 마름모형이 혼합된 나선형 형태이다. 실험결과, 이 연구에서 제안된 유공보강근은 유공 주변의 균열을 효과적으로 제어하여 실험체의 전단력 향상에 효과적임을 확인하였다. 또한 현행설계기준은 유공 보강근을 배근한 실험체의 실험결과를 과소평가하는 것으로 나타났다.

아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구 (Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements)

  • 이가윤;이동영;박민수;이기학
    • 한국지진공학회논문집
    • /
    • 제27권4호
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

겹침이음 상세에 따른 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (The Experimental Study on Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice)

  • 석상근;손혁수;정철호;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.553-558
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seismic performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

겹침이음 상세에 따른 철근콘크리트 교각의 내진성능 (Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice)

  • 이재훈;손혁수;석상근;정철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.345-352
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seisimc performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구 (I) (Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads)

  • 최창식;이용재;윤현도;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.75-80
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with rectangular cross section under cyclic loads are discussed and evaluated. Two half scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick for all specimens and the section of all boundary at both ends is 100 mm $\times$ 200mm. Main variables are : horizontal shear reinforcement ratios and reinforcement details(including crossed diagonal shear reinforcements in SWR2 specimen) In SWR2 specimen, maximum strength and consequently dissipating energy index were 1.15~1.21 and 1.48 times greater than those of SWR1 specimen, respectively.

  • PDF

Joint shear strength prediction for reinforced concrete beam-to-column connections

  • Unal, Mehmet;Burak, Burcu
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.421-440
    • /
    • 2012
  • In this analytical study numerous prior experimental studies on reinforced concrete beam-to-column connections subjected to cyclic loading are investigated and a database of geometric properties, material strengths, configuration details and test results of subassemblies is established. Considering previous experimental research and employing statistical correlation method, parameters affecting joint shear capacity are determined. Afterwards, an equation to predict the joint shear strength is formed based on the most influential parameters. The developed equation includes parameters that take into account the effect of eccentricity, column axial load, wide beams and transverse beams on the seismic behavior of the beam-to-column connections, besides the key parameters such as concrete compressive strength, reinforcement yield strength, effective joint width and joint transverse reinforcement ratio.