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Abstract: This numerical study investigated the effects of different reinforcing details in beam-column joints on the blast

resistance of the joints. Due to increasing manmade and/or natural high rate accidents such as impacts and blasts, the resistance of

critical civil and military infrastructure or buildings should be sufficiently obtained under those high rate catastrophic loads. The

beam-column joint in buildings is one of critical parts influencing on the resistance of those buildings under extreme events such as

earthquakes, impacts and blasts. Thus, the details of reinforcements in the joints should be well designed for enhancing the

resistance of the joints under the events. Parameters numerically investigated in this study include diagonal, flexural, and shear

reinforcing steel bars. The failure mechanism of the joints could be controlled by the level of tensile stress of reinforcing steel bars.

Among various reinforcing details in the joints, diagonal reinforcement in the joints was found to be most effective for enhancing

the resistance under blast loads. In addition, shear reinforcements also produced favourable effects on the blast resistance of beam-

column joints.
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1. Introduction

There have been many incidents involving explosive
accidents and terrorism which may occur in unexpected
places and time. Explosive accidents in densely populated
area may result in immense casualties and property damage
(Lee and Lee 2001; Roh 2011). Therefore, structures should
be designed to resist such an extreme event load. In general,
the application of blast-resistant design so far has been
limited to military and some important civilian facilities like
nuclear power plants. However, common structures such as
high-rise building and large public structures also need to be
designed for blast or impact loads in order to prepare for the
terrorist attacks aiming unspecified multitudes and the
unexpected explosive accidents. In spite of this global threat
of terrorism, most of the countries have not established the
antiterrorism design clearly. Even for a few antiterrorism

design guides, they are generally limited to the military
facilities. Department of Defense (DoD) of the United States
deals with substantial information recorded on security
documents about blast resistance because the study on blast-
resistant structures is directly related to national security.
Moreover, there has been a lack of studies on this topic.
Therefore, establishment of design criterion and related
study should be required to design blast-resistant structures
including not only military facilities but also private
facilities.
First and foremost, engineers should consider energy

absorption capability of construction materials to design
blast-resistant structures. In addition to energy absorption,
the materials have to have sufficient strength and ductility to
resist pressure and to control the deflection during explosion.
In that sense, reinforced concrete structures are considered
the suitable structural systems to resist blast loads because
concrete has outstanding energy absorption ability and at the
same time reinforcement can make up for sufficient ductility
which could be the weakness of concrete (DoD 2008;
Dusenberry 2010).
Structural members are generally dealt with as Beam or

Bernoulli (B) Region in which Bernoulli’s hypothesis of
straight-line strain profiles applies (Park 2011) for analysis
and design of these reinforced concrete whereas the joints or
connections in reinforced concrete structures are mostly
dealt with as disturbed or discontinuity (D) Region. Joints
are critical parts of structural system where more than two
elements meet because failure or disability of connections
can do badly damage the whole structural system such as
progressive collapse (Dusenberry 2010; Cormie et al. 2009).
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In this study, blast-resistant capacities of beam-column
joints were numerically investigated according to different
reinforcing details including additional flexural, shear and
diagonal bars. This numerical study on the reinforced con-
crete structures subjected to blast loads has significant ben-
efits over experimental investigation, given that repetitive
blast tests accompany enormous cost and time. A commer-
cial finite element analysis program, LS-DYNA, was used
for the analysis of blast-resistance of beam-column joints in
this study. The support rotations, deflection of member and
failure shape were analysed from the numerical results by
comparing with design standard.

2. Literature Review

2.1 Details of Blast-Resistant Structures
Reinforced concrete structures are believed to be suit-

able for blast-resistance structure, as construction materials,
owing to enhanced energy absorption capacity and ductility
at high strain rates (Bounds 2010; Dusenberry 2010). In
order to reasonably investigate the blast resistance of rein-
forced concrete members by carrying out numerical simu-
lations, the strain rate effects on the behavior of concrete as
well as reinforcing steel bar should be considered because
both concrete and steel reinforcing bar are subjected to very
high strain rates under blast loads. The strain rate effects are
mostly considered by applying dynamic increase factors
(DIFs), i.e. the ratio of the dynamic to static response. As the
strain rate was getting faster, the apparent strength of the
materials significantly increased as shown in Fig. 1 (DoD
2008). For concrete, the DIFs for strength can be more than
2 in compression while more than 6 in tension (Bischoff and
Perry 1991; Malvar and Ross 1998; Birkimer and Linde-
mann 1971).
The monolithic connections of reinforced concrete struc-

tures are very advantageous in blast-resistant structures. As
substantial deformation is mutually transmitted between the
beam and the column (or the slab and the wall), monolithic

types of connection could more effectively resist blast loads
(Dusenberry 2010).
Reinforcement details must affect structural safety under

the complicated stresses. Longitudinal reinforcements
should be continuous through connectors without splices and
joints of the reinforcing rebar within the distance of twice the
beam depth from the connection faces, which is the required
sufficient development length in connections (Bounds 2010;
Dusenberry 2010). Diagonal reinforcements can be used to
enhance the behavior of connections. According to Unified
Facilities Criteria (UFC) 3-340-02, development length of
diagonal bars for the blast-resistant joints should be more
than 20 times of bar diameter over the critical section, which
is generally taken at a distance ‘d (effective depth)’ from the
face of the connections(DoD 2008; Bounds 2010). The
beneficial effects of the diagonal bars on the blast-resistance
of connections were studied by a few researchers, but the
structural behavior of blast-resistant connections reinforced
with diagonal bars has not been fully investigated
(Krauthammer 1996, 1997, 1999).

2.2 Deformation Criterion of Blast-Resistant
Structures
Department of Defense (DOD) of United States estab-

lished UFC. Especially UFC 3-340-02, superseded ARMY
TM 5-1300, NAVFAC P-397 and AFR 88-22, presents
methods of design for protective construction. UFC 3-340-
02 reported that support rotation and ductility are good
indicator to evaluate blast-resistant performance of RC
structure members. According to UFC 3-340-02, the limi-
tation of support rotation is 2 degrees when the concrete
structure is effective in resisting moment (DoD 2008).
American Society of Civil Engineers (ASCE) suggested
level of protection (LOP) and the maximum response limits
of reinforcement concrete structures, as shown in Table 1
(ASCE/SEI 2011). It is noted that both manuals of DoD and
ASCE suggested support rotation as the main criterion to
assure the integrity of RC elements for the design of blast-
resistance structures.
According to other researches, however, the support

rotation alone cannot be the absolute criterion for the
integrity of blast-resistant concrete connections. For
instance, the numerical study on the beam-column con-
nections subjected to blast load by Krauthammer showed
that the member can fail though maximum rotation of
member does not exceed the allowable limit (Krauthammer
1999). Therefore, before the application of these criteria,
sufficient analysis of the potential disruptions, such as
failure by repulsive forces of structural members, is nec-
essary. In addition, various evaluation factors including not
only local and global rotations, and ductility ratio but also
reinforcement stress and strain should be examined thor-
oughly to evaluate performance of blast-resistant structural
concrete.

2.3 Blast Loads
The typical masses of explosive materials are defined in

Europe, as shown in Table 2 (Yandzio and Gough 1999).
Fig. 1 Stress–strain curve in concrete subjected to blast

loads.
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M/CE refers to military and commercial explosives, such as
trinitrotoluene (TNT) and home-made explosives (HME). In
simulating the actual situation of explosion, this study refers
to these examples.
LS-DYNA provides the LOAD_BLAST or LOAD_-

BLAST_ENHANCED for modeling of blast loads. These
options can be substituted for the solids model of TNT. In
this case, LS-DYNA provides characteristics of TNT. These
functions consider Chapman-Jouguet’s explosion velocity
which is one of the equivalent mass defining method, as
follows (LSTC 2013a; Glenn and Bannister 1997).

MTNT ¼ M
DCJ2

DCJ2TNT

MTNTis the equivalent TNT mass, M the mass, DCJTNT the
Chapman–Jouguet detonation velocity, DCJ the Chapman–
Jouguet velocity of explosive.

3. Numerical Analysis Method

In this study, the LS-DYNA, used for nonlinear and
transient dynamic analysis liked blast or impact using
explicit time integration, was selected for numerical analysis.

This is a general purpose finite element program capable of
simulating complex problems such as automobile, aero-
space, construction and so on (LSTC 2013a).

3.1 Materials
3.1.1 Steel
Strain-rate effects should be considered for the properties

of materials subjected to dynamic loads. In this study,
ASTM Grade 60 bar was used. Its properties under normal
condition and blast loads were shown in Table 3.
These properties, included strain-rate effects, could be

obtained by repeated experiments (Crawford et al. 2012).
For the modeling of steel, MAT_024 in LS-DYNA was
selected, which is defined an elastic–plastic material with an
arbitrary stress versus strain curve and arbitrary strain rate
dependency. The fracture of MAT_024 is based on a plastic
strain (LSTC 2013b).

3.1.2 Concrete
In this study, MAT_072R3 is selected for concrete material

model of connections applying high fidelity physics-based
(HFPB) simulations to predict structural behavior (LSTC
2013b). Among the concrete models in LS-DYNA,
MAT_072R3 can be the most suitable for analyzing concrete
structures subjected to blast loads since it has outstanding

Table 1 Maximum response limits for reinforced concrete (ASCE/SEI 2011).

Element type Superficial (lmaxÞ Moderate (hmaxÞ Heavy (hmaxÞ Hazardous (hmaxÞ
Single-reinforced slab or

beam
1 2� 5� 10�

Single-reinforced beam-
column

1 2� 2� 2�

Double-reinforced beam-
column without shear

reinforcement

1 2� 2� 2�

Double-reinforced beam-
column with shear
reinforcement

1 4� 4� 4�

Table 2 Typical example of terrorist explosive materials in Europe.

Variables Explosion method Material Loaded weight

Bomblet Small briefcase M/CE 2–4 kg

Large briefcase M/CE 4–12 kg

Suitcase M/CE 12–22 kg

Bicycle M/CE 30 kg

Car bomb Sedan HME 250 kg

Small van HME 1–2 ton

Large van HME 2–3 ton

Small truck HME 3–4 ton

Large truck HME 4–5 ton
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accuracy than other material models in LS-DYNA when
comparing with experiments such as the axial static loading,
bending test and impact test (Crawford et al. 2012).
MAT_072R3 is a three-invariant model, uses three shear
failure surfaces, and includes damage and strain-rate effects
(LSTC 2013b). It is noted that many of the models in LS-
DYNA do not allow failure and erosion which is the effect
of local damage of blast as crater spall and breach (Ling
2013). Therefore, The ADD_EROSION option was con-
sidered to include the failure criteria since MAT_072R3 does
not allow failure. Table 4 shows properties of concrete used
in this numerical analysis.

3.2 Blast Loads
TNT can be modelled as solids to simulate blast loads.

From the load options of LS-DYNA, LOAD_BLAST or
LOAD_BLAST_ENHANCED can be selected to model
TNT. These functions are based on CONWEP blast model
(Glenn and Bannister 1997). In this study, the LOAD_-
BLAST_ENHANCED was selected for modelling the blast
load, and consequently 30 kg of TNT, which is a bicycle
bomblet, was simulated on the beam 1 m away from the
column face. Figure 2 shows pressure diagram for the 30 kg
of TNT.

3.3 Modelling of the Specimens
The way how to simulate the model is very important

because analysis result can be different depending on it.
Even though numerical analysis results may have similar
tendency overall in spite of different element sizes, the
analysis results consisted with the actual value were signif-
icantly affected by size effects (Krauthammer 1997; Yim and
Krauthammer 2009). Foglar and Kovar (2013) performed
comparative study of the experimental and numerical anal-
yses involved with blast loads. According to their study, the
experimental results were in good agreement with the
numerical analysis results when concrete mesh were consist
of 8-node solid elements of 30 9 30 9 30 mm using LS-

DYNA. In this study, therefore, concrete mesh consists of
8-node solid elements by referring to the analysis method by
Foglar and Kovar (2013) in order to assure reliability of
analysis results.
The interaction between the concrete and the reinforce-

ments is typically implicit. In this study, it was achieved by
tying the rebar elements and the concrete elements as the
same nodes. Explicit modelling of bond-slip phenomena
considering the actual properties and performance of struc-
tural members is a quite complex analysis problem.
Accordingly, various studies on RC structures subjected to
blast loads suggest that the tedious details are neither needed
nor desirable (Crawford et al. 2012).

4. Numerical Analysis Specimens

In this study, the behavior of beam-column connections
was investigated when the connection was under blast loads.
Specimens were designed as monolithic connections which
have advantage to resist the blast loads, as mentioned earlier
(Dusenberry 2010).

Table 3 Material properties of ASTM Grade 60 rebar.

Loading condition Yield strength Tensile strength Density

Young’s modulus Poisson’s ratio etc.

Static load 414 MPa 620 MPa 7.86 9 10-6 kg/mm3

2.0 9 105 MPa 0.30 Elongation: 18 %

Impact or blast load 475 MPa 751 MPa 7.86 9 10-6 kg/mm3

2.0 9 105 MPa 0.30 Fracture strain: 35 %

Table 4 Concrete properties.

Properties Variables

Compressive strength 45.2 MPa

Density 2230 kg/m3

Poisson’s ratio 0.19

Tensile strength 3.2 MPa

Fig. 2 Pressure diagram under 30 kg of TNT.
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Table 5 shows the variables of beam-column connections
according to reinforcement details. Control Specimen BC
was designed based on ACI 318-11 and ACI 352R-02. The
longitudinal steel ratio of column is 0.038 Ag (Ag is the gross
area of column section) which is satisfied with ACI318-11.
The transverse rebar of the column used the No. 4 ties; and
the spacing between the sets of ties was 150 mm (5.9 inch),
which should be less than or equal to 6 inches according to
ACI 352R-02. The flexural rebar of beam section arranged
four No. 11 bars by ACI 352R-02 (ACI-ASCE 2010; ACI
2011). By default, all other specimens were designed in the
same manner as the Specimen BC, but each specimen was
reinforced with different additional reinforcement, as follow.
Specimen BC-F was additionally reinforced with four No.
11 rebars at the bottom of the beam in order to check if the
additional flexural reinforcement is effective on the
enhancement of blast-resistant capacity. For Specimen BC-
D, the diagonal bar was additionally reinforced from Spec-
imen BC. The development length of the diagonal bar was
set to 720 mm by referring the UFC 3-340-02. Other studies
reported that diagonal bar is essentially reinforced on con-
nections of concrete structures to resist blast loads (DoD
2008; Bounds 2010). Therefore, the benefits of diagonal
reinforcements could be verified by comparison of speci-
mens BC and BC-D. In addition, the beneficial effect of
flexural reinforcement and diagonal reinforcement on the
blast-resistance can be compared from the analysis results of
specimen BC-F and BC-D since the steel ratio of additional
reinforcement of both specimens is equal. For Specimen BC-
F-S, minimum shear reinforcements were added to Specimen
BC-F in the beam region. Comparison of Specimen BC-F-S
with BC-F would confirm the effects of shear reinforce-
ments. The synergetic effects of various types of reinforce-
ments on blast-resistant capacity could be demonstrated in
Specimen BC-A which is reinforced with all types of bars
including diagonal, flexural, and shear reinforcements. Fig-
ure 3 shows the details of beam-column specimens.

5. Results and Discussion

The main objective of the analyses is to investigate the
effects of reinforcement details on blast-resistance

performance of beam-column joints. From the analyses
results, typical forms of pressure distribution shown in Fig. 4
were commonly observed to all specimens. This tendency of
pressure development with time is quite similar to previous
research (DoD 2008). Analysis results mainly focused on
failure shape, beam deflection, support rotation, Stress and
strain in the reinforcements, and so on. Analysis results and
discussion for each analysis variable of reinforcement are as
follow.

5.1 Effect of Flexural Reinforcement
Figure 5 shows the failure shapes of all specimens at

200 ms (milliseconds). Fractures followed by a considerable
deflection were observed in the entire beam section of
control specimen BC and Specimen BC-F reinforced with
flexural reinforcements. In addition, severe concrete spalling
occurred at the bottom surface because blast pressure
transmitted from the exposed surface to opposite side.
Given that the explosive material, TNT, was near the beam

surface than the column face, the blast load influenced the
beam region than the column resulting in a considerably
large beam deflection. To compare the performance of the
beam of all specimens, deflections of beam region were
measured at Points A and B, as shown in Fig. 6. Point A
indicates the location where the diagonal bars end in the
beam section, and Point B is located at the end of the beam
section. Table 6 shows the maximum deflection during the
analysis time at each points, A and B, for every specimen.
When considering the deflection of beam region, Specimens
BC and BC-F showed poor performances to resist blast
loads. The deflections of both specimens were continuously
increased even after the end of the analyses at 200 ms.
Table 7 shows the support rotation when maximum

deflection during the analysis time occurred. According to
UFC 3-340-02, the limitation of support rotation to effec-
tively resist moment is 2 degrees (DoD 2008). Specimens
BC and BC-F were over the limitation at both points A and
B. Table 8 shows the maximum steel stress and strain during
the analysis time. As the deflections of both specimens BC
and BC-F continuously increased so were the stress and the
strain of reinforcements.
Additional flexural reinforcements seem to be ineffective

to resist blast loads.

Table 5 Description of specimen variables.

Specimen Description

Specimen BC Beam-column connection designed according to ACI318 and
ACI352R

Specimen BC-F Additional four No. 11 flexural reinforcement based on Specimen BC

Specimen BC-D Additional four No. 11 diagonal reinforcement based on Specimen BC

Specimen BC-F-S Additional No. 4 shear reinforcement @300 mm based on Specimen
BC-F

Specimen BC-A Reinforced with all type of bars including diagonal, flexural and shear
reinforcement

International Journal of Concrete Structures and Materials (Volume 10, Number 3 Supplement, September 2016) | S91



5.2 Effect of Diagonal Reinforcement
Specimen BC-D reinforced with additional diagonal

reinforcements showed that deflections at Points A and B
were effectively controlled when comparing to Specimen
BC, as shown in Table 6. It shows that diagonal bars are

essential in concrete joints subjected to blast loads, which is
consistent with previous studies (ACI 2011; DoD 2008).
Also, deflection of Specimen BC-D at Point A was about 3
times less than that of Specimen BC-F reinforced with
additional flexural bars whose steel ratio is same as diagonal

Fig. 3 Details of specimens. a Specimen BC. b Specimen BC-F. c Specimen BC-D. d Specimen BC-F-S. e Specimen BC-A.

Fig. 4 Pressure contours of Specimen BC-A. a t = 0.10 ms, b t = 0.20 ms, c t = 0.30 ms, d t = 0.50 ms.
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bars of Specimen BC-D. Therefore, it can be another finding
that diagonal reinforcements would be more effective to
resist blast loads than additional flexure reinforcements.

Figure 7 shows the maximum deflection of specimens
according to the distance from the column faces. The maxi-
mumdeflection during the analysis timewas obtained formain
nodes of the beam, so each data of the maximum deflection
could be observed at slightly different times. It is interesting to
note that large deflection occurred at location beyond the end
of diagonal reinforcements. For Specimen BC-D, plastic
hinge zone was relocated from the column face to the beam
region due to the diagonal reinforcement. Given that beam
region from the column face to the distance ‘d’ (effective depth
of beam) is typically considered as critical section according to
ACI 318-11 (2011), this phenomenon could make the struc-
ture safer because failure behavior of the beam must be more
ductile than that of beam-column joints.
As shown in Table 7, diagonal reinforcement showed

beneficial effect on support rotation, too. Support rotation of
Specimen BC-D at Point A was smaller than failure criteria,
2 degrees, but at Point B, it was still larger than 2 degrees
even though the support rotation considerably decreased due
to the diagonal reinforcement.

Fig. 5 Failure shapes of specimens. a Specimen BC. b Specimen BC-F. c Specimen BC-D. d Specimen BC-F-S. e Specimen BC-A.

Fig. 6 Location of points A and B.
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5.3 Effect of Shear Reinforcement
As shown in Fig. 5, Specimen BC-F-S showed good shape

of failure with less deflection and less concrete spalling
because the beam region could be constrained by shear
reinforcement. Especially, Specimen BC-F-S showed negli-
gibly small deflection for the region from column face to
500 mm, but the deflection increased steeply for beyond the
region. In addition, support rotation of Specimen BC-F-S
dramatically decreased as shear reinforcements were added.
The support rotation at Point Awas satisfied with the criteria,
and that at Point B was only 2.76� which was slightly over
the criteria. Furthermore, as shown in Table 8, the reduced
stress in the flexural reinforcing bar was observed due to the

shear reinforcement bearing the substantial portion of stress
and confining the beam section.
From Specimens BC-F and BC-F-S, it can be found that

flexural reinforcement alone cannot be effective to enhance
blast resistance, but shear reinforcements with flexural bars
can give beneficial effects on blast resistance by reducing
deflection and relocating plastic hinge zone (ASCE/SEI
2011).

5.4 Synergetic Effect of All Reinforcement
Specimen BC-A, which was reinforced with various

reinforcements including flexural, diagonal and shear rebars,
showed the best performance in terms of failure shape,

Table 6 Maximum deflection of beam.

Specimen At the point A At the point B

Max. deflection (mm) Time (ms) Max. deflection (mm) Time (ms)

BC -63.0 200.0 -313.0 200.0

BC-F -10.3 61.1 -143.7 200.0

BC-D -3.6 21.3 -82.6 81.0

BC-F-S -4.2 12.3 -23.0 25.2

BC-A -2.0 2.8 -17.9 19.2

Table 7 Support rotation of specimens.

Specimen At the Point A At the Point B Deflection

Support rotation Comparison to criteria Support rotation Comparison to criteria

BC 17.18� NG 37.56� NG Failed

BC-F 2.81� NG 17.24� NG Failed

BC-D 0.99� OK 9.91� NG Controlled

BC-F-S 1.15� OK 2.76� NG Controlled

BC-A 0.55� OK 2.15� NG Controlled

Table 8 Maximum stress and strain in reinforcements.

Type of reinforcements Max. stress (MPa) Max. strain Time (ms)

BC Flexural bars in the top 602.13 0.0386 200

BC-F Flexural bars in the top 513.64 0.018 200

Flexural bars in the bottom 479.14 0.0079 58.3

BC-D Flexural bars in the top 577 0.0327 169.6

Diagonal bars 479.75 0.0089 58.4

BC-F-S Flexural bars in the top 354.77 0.0017 12.3

Flexural bars in the bottom 397.4 0.0019 9.7

Shear reinforcement 527.55 0.0214 191.3

BC-A Flexural bars in the top 401.44 0.002 9.1

Flexural bars in the bottom 472.67 0.0026 9.5

Diagonal bars 472.67 0.0027 9.5

Shear reinforcement 527.54 0.0214 136
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maximum deflection, support rotation, and relocation of
plastic hinge zone. This excellent behavior can be regarded
as mutual synergistic results of the moment resisting per-
formance of flexural reinforcement, strengthening the unity
of column and beam by diagonal reinforcement, and con-
finement effect of shear reinforcement. Figure 8 shows the
maximum stresses in each type of reinforcements versus
elapsed time after explosion for Specimen BC-A. As shown
in Fig. 8, among the various types of reinforcements, shear
reinforcement should bear the greatest stress throughout the
entire analysis. Given in order of the amount to bear the
stress, shear, diagonal, bottom flexural, and top flexural
reinforcements are in order. Approximately 50 ms after the
explosion, however, the top flexural reinforcement should
bear a greater stress than the diagonal reinforcement.

6. Conclusions

Blast resistance of beam-column connections was
numerically assessed according to reinforcement details.
Analysis results included failure shape, deflection, support
rotation, and stress in reinforcement. Based on the analysis
results, the following conclusions were drawn in this study.

(1) The beam-column connection designed based on the
specification for members under static load should be

too vulnerable to resist the blast loads. As a result, a
considerably large deflection can be caused by blast
loads because the plastic hinge region is formed
throughout the beam region. For this reason, the
guideline specifically developed for structural members
subjected to blast loads is necessary to improve the
blast-resistance.

(2) Diagonal reinforcement can give better blast-resistance
performance than flexural reinforcement in terms of
deflection and support rotation. In addition, by reloca-
tion of plastic hinge zone from column face to beam
region, the diagonal reinforcement would contribute to
the ductility of beam-column connection when consid-
ering that plastic hinges are usually formed in the
critical section near column face which may result in a
brittle failure.

(3) Shear reinforcements considerably affect blast-resis-
tance capacity. To add flexural reinforcement only
without shear reinforcement is not very effective to
enhance blast-resistance, but the combination of
flexural and shear reinforcements can yield compar-
atively superior blast-resistant performance mainly
because the shear reinforcement confine the beam. It
confirms that shear stress should be importantly
considered to design reinforced concrete structures
subject to blast loads.

(4) When beam-column connection is reinforced with all
types of reinforcements at once, blast-resistant behav-
ior can be much improved in terms of failure shape,
deflection, support rotation, and so on. It seems due to
synergistic effect by the combination of flexural,
diagonal and shear reinforcements.

(5) According to the analysis result in this study, support
rotation of some specimens exceeded the failure criteria
despite they have shown good behavior with regard to
failure shape and deflection. Therefore, to evaluate
structural behavior of the concrete members subjected
to blast loads, not only support rotation but also
additional factors such as ductility ratio, deflection,
plastic hinge region, and reinforcement stress should be
investigated.

Fig. 7 Maximum beam deflection versus distance from column face. a All specimens. b Specimen BC-F-S and BC-A.

Fig. 8 Stress evolution in reinforcements of Specimen BC-A.
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