• Title/Summary/Keyword: shear construction

Search Result 1,766, Processing Time 0.041 seconds

Behavior and Strength of Wall-Slab Connection in SC Structure (SC구조 벽-바닥 접합부의 내력 및 거동 특성)

  • Kim, Hyeong Gook;Kim, Woo Bum;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.347-354
    • /
    • 2008
  • Steel plate-concrete (SC) structure has recently been used in nuclear power structure because of its construction efficiency. In this study, experimental and analytical study to investigate the behavior of the SC structure's wall slab connection was carried out. Experiments were performed for typical SC and RC connections in order to examine the basic difference between each structure. Finite element analysis was performed and the result of the analysis was found to closely reflect the experimental result. By varying the thickness of the shear plate and friction coefficients and the distance of applied load from the wall, the influence of the parameters on the joint strength and failure modes were examined. Finally, it was confirmed that the joint strength formula proposed in th this research gives conservative results.

An Experimental Study on Structural Behavior of Bolted Angle Connections with Austenitic Stainless Steel (오스테나이트계 스테인레스강(STS304) 앵글 볼트 접합부의 구조적 거동에 관한 실험적 연구)

  • Kim, Min-Seong;Kim, Tae-Soo;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.29-39
    • /
    • 2011
  • With regard to steel construction, many studies have been performed to examine the structural behavior of the bolted connections domestically and in other countries. Especially, a domestic study was conducted on the block shear fracture and shear lag effect on the single-bolted angle connection in carbon steel. In this study, specimens were prepared with the end distance parallel to the loading direction and bolt arrangement ($1{\times}1$, $1{\times}2$), as the main variables. Then the fracture mode and the curling effect on the bolted angle connection in austenitic stainless steel were investigated. Moreover, the fracture mode and ultimate strength were compared, and the strength reduction by curling was estimated.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Environmental Impact Characteristics Analysis of High-rise Structural System Based on Life Cycle Assessment (전과정평가 기법에 기반한 고층구조시스템의 환경영향특성 분석)

  • Kim, Rak-Hyun;Kim, Young-Hwa;Roh, Seung-Jun;Park, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.71-79
    • /
    • 2022
  • Recently, the construction of tall buildings utilized by high strength-concrete in the whole world is tending to be on the rise. The application of high-rise structural system in buildings results in the excellent cut-down effect in construction materials due to section reduction. Therefore, in order to investigate the CO2 and resource reduction effect for the high-rise structural system, comparisons of GWP and ADP in embodied energy of structural materlais between 4 type of high-rise structural system have been performed. As a result, GWP emission increased in the order of steel structure outrigger system, RC shear wall system, and RC outrigger system. On the other hand, ADP emissions increased in the order of RC shear wall system, RC outrigger system, and steel structure outrigger system.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.

A Study on the Design of Shear Connector of Continuous Composite Bridge (연속합성형 교량의 전단연결재 설계에 관한 연구)

  • Chang, Sung Pil;Kang, Sang Gyu;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.351-362
    • /
    • 1997
  • In designing short to medium-span bridges, continuous composite bridges are becoming popular due to their advantages. However, if the concrete slab in continuous composite bridge is not prestressed, negative moment occurs in the mid-support and creates problems such as cracks in the concrete slab. Therefore. it must be considered in design. Two methods of arrangement of shear connectors were conducted using finite element elastic plastic analysis. Partial interaction theory was introduced and an analytical solution based on this theory was derived. The differences in the degree of interaction were investigated using analytical solutions and finite element analyses of simple composite beam and continuous composite beams. The results of the analyses were used to determine the advantage and disadvantages as well as any precaution when necessary using partial composite during actual design and construction.

  • PDF

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Behaviors of Joints with Perfobond Rib Shear Connectors in Steel-PSC Hybrid System (Perfobond Rib을 적용한 강-PSC 혼합구조 연결부의 거동 평가)

  • Kim, Sang Hyo;Lee, Chan Goo;Yoon, Ji Hyun;Won, Jeong Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.647-657
    • /
    • 2009
  • This paper studies the behavior of joints in steel-PSC (prestressed concrete) hybrid beams, which is necessary for the application of hybrid beams to spliced girder bridges, and proposes a new type of joint with improved construction convenience and structural behavior. In the proposed joint, perfobond rib shear connectors are attached to the upper and lower plates, which are expanded from the steel girders and located between the steel girder and the PSC girder. The experimental tests were performed on hybrid beams with the suggested joint. The results showed that all the beams had similar ultimate strengths and failure modes, due to the failure of their PSC parts. The composite action of the perfobond ribs was verified by examining the initial stiffness and cracks of the test beams. In addition, the test beams showed a higher degree of ultimate strength than the beams with stud shear connectors in the joints that had been previously studied. Thus, the proposed joint is effective for the steel-PSC hybrid beam.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF