DOI QR코드

DOI QR Code

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi (Department of Architecture, Built environment and Construction engineering (ABC)) ;
  • Marco A. Pisani (Department of Architecture, Built environment and Construction engineering (ABC)) ;
  • Marco Simoncelli (Department of Architecture, Built environment and Construction engineering (ABC))
  • Received : 2023.02.16
  • Accepted : 2023.09.28
  • Published : 2023.10.10

Abstract

Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.

Keywords

References

  1. AS/NZS 2327 Australian/New Zealand standard (2017), Composite Steel-Concrete Construction in Buildings. Sydney/Wellington.
  2. Abdullah, R., Kueh, A.B.H., Ibrahim, I.S. and Easterling, W.S. (2015), "Characterization of shear bond stress for design of composite slabs using an improved partial shear connection method", J. Civil Management, 21(6), 720-732. https://doi.org/10.3846/13923730.2014.893919.
  3. Baldassino, N., Bernuzzi, C. and Simoncelli, M., (2019) "Experimental vs. theoretical design ap-proaches for thin-walled cold-formed steel beam-columns", Adv. Steel Construct., 15(1), 55-65. https://doi.org/10.18057/IJASC.2019.15.1.8.
  4. Bilek, V., Bonczkova, S., Hurta, J., Pytlik, D. and Mrovec, M. (2017), "Bond strength between reinforcing steel and different types of concrete", Procedia Eng. 190, 243-247. https://doi.org/10.1016/j.proeng.2017.05.333.
  5. Cas, B., Bratinat, S., Miran, S. and Planinc, I. (2004), "Non-linear analysis of composite steel-concrete beams with incomplete interaction", Steel Compos. Struct., 4(6), 489-507. https://doi.org/10.12989/scs.2004.4.6.489.
  6. Costa, R.S., Lavall, A.C.C. and Andrade, E.L. (2021), "New equations to establish the effective moment of inertia of composite slabs with profiles steel sheeting for deflection calculation", J. Build. Eng., 37, 102135. https://doi.org/10.1016/j.jobe.2020.102135.
  7. CEB - Comite Euro-International du Beton (1983), CEB Bulletin 158: CEB Design Manual Crack-ing and Deformations. Lausanne: CEB - Comite Euro-International du Beton.
  8. CEN EN1992-1-1 (2010), Eurocode 2: Design of concrete structures -Part 1-1 : General rules and rules for buildings - EN 1992-1-1. Bruxelles, Belgium: European Committeee for Standardization.
  9. CEN EN1993-1-1 (2005), Eurocode 1: Design of Steel Structures - Part 1-1-: General Rules and Rules for Buildings.
  10. CEN EN1993-1-1 (2005), Eurocode 3: Design of Steel Structures - Part 1-3-: General Rules - Supplementary Rules for Cold-Formed Members and Sheeting.
  11. CEN EN1994-1-1 (2004), Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-1-: General Rules and Rules for Buildings.
  12. Chen, S., Shi, X. and Qui, Z. (2011), "Shear bond failure in composite slabs - a detailed experimental study", Steel Compos. Struct., 11((3), 233-250 https://doi.org/10.12989/scs.2011.11.3.233.
  13. Chaklos, J.M., Yulismana, W. and Earls, C.J. (2004), "Concrete-Steel Interfacial Bond Strength in Composite Flooring: Shoring and Form Removal", Pract. Period Struct. Des. Constr, 9, 9-15. https://doi.org/10.1061/(ASCE)1084-0680(2004)9:1(9).
  14. Crisinel, M. and Marimon, F. (2004), "A new simplified method for the design of composite slabs", J. Construct. Steel Res., 60, 3-5, 481-491. https://doi.org/10.1016/S0143- 974X(03)00125-1.
  15. Hedaoo, N.A., Gupta, L.M. and Ronghe, G.N. (2012), "Design of composite slabs with profiled steel decking: a comparison between experimental and analytical studies", J. Adv. Struct. Eng., 3, 1-15. https://doi.org10.1186/2008-6695-3-1.
  16. International Federation for Structural Concrete (2013), Fib Model Code for Concrete Structures 2010. Berlin, Wilhelm Ernst & Sohn.
  17. Nigro, E., Bilotta, A. and Flaccovio, D. (2011), Progettazione di strutture composte acciaio-calcestruzzo, Hoepli.
  18. Patrick, M. and Bridge, RQ. (1999), Review of Concepts Concerning Bond of Steel Decking. Proc. 12th Int. Spec. Conf. Cold-Form. Steel Struct., Rolla, MO 65409, Stati Uniti: Missouri University of Science and Technology, p. 27.
  19. Pisani, M.A. (1996), "A numerical method to analyse compact cross-sections", Comput Struct., 59, 1063-1072. https://doi.org/10.1016/0045-7949(95)00340-1.
  20. Raffaele, D., Uva, G., Porco, F. and Fiore, A. (2013), "A parametrical analysis for the rotational ductility of reinforced concrete beams", Open Civ Eng. J., 7, 242-253. https://doi.org/10.2174/1874149501307010242.
  21. Rahman, M.M. and Ranzi, G. (2022), "Shrinkage-induced response of composite steel-concrete slabs: A state-of-the-art review", Appl. Sci., 12, 223. https://doi.org/10.3390/app12010223.
  22. Ranzi, G., Leoni, G. and Zandonini, R. (2013), "State of the art on the time-dependent behaviour of composite steel-concrete structures", J. Construct. Steel Res., 80, 252-263. https://doi.org/10.1016/j.jcsr.2012.08.005.
  23. Rotter, J.M. (1985), "Rapid exact inelastic biaxial bending analysis", J. Struct. Eng., 111, 2659-2674. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2659).
  24. Safa, M., Shariati, M. and Dalibor, P. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  25. Salonikios, T.N., Sextos, A.G. and Kappos A.J. (2012), "Tests on composite slabs and evaluation of relevant Eurocode 4 provisions", Steel Compos. Struct., 13(6), 571-586. https://doi.org/10.12989/scs.2012.13.6.571.
  26. Saravanan, M., Marimuthu, V., Prabha, P., Arul Jayachandran, S. and Datta, D. (2012), "Experimental investigations on composite slabs to evaluate longitudinal shear strength", Steel Compos. Struct., 13(5), 489-500 https://doi.org/10.12989/scs.2012.13.5.489.
  27. Sirimontree, S., Thongchom, C., Keawsawasvong, S., Nuaklong, P., Jongvivatsakul, P., Dokduea, W. and Farsangi, E.N. (2021), "Experimental study on the behavior of steel-concrete composite decks with different shear span-to-depth ratios", Buildings, 11(12), 624. https://doi.org/10.3390/buildings11120624.
  28. Stark, J.W.B. and Brekelmans, J.W.P.M. (1990), "Plastic design of continuous composite slabs", J. Construct. Steel Res., 15, 23-47. https://doi.org/10.1016/0143-974X(90)90041-E