• 제목/요약/키워드: shape functions

검색결과 1,037건 처리시간 0.026초

새로운 부등매개변수 면내변형 곡선보 요소에 관한 연구 (A Study of a New Anisoparametric In-Plane Deformable Curved Beam Element)

  • 유재형;유승원;문원주;민옥기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.405-410
    • /
    • 2000
  • Generally, it is known that the reduced integration, modified shape function anisoparametric and non-conforming element can minimize the error induced by stiffness locking phenomenon in the finite element analysis. In this study, new anisoparametric curved beam elements are introduced by using different shape functions in each displacement field. When these shape functions are substitute for functional, we can expect that the undulate stress patterns are not appeared or minimized because there is no unmatched coefficient in the constrained energy equation. As a result of numerical test, the undulate stress patterns are disappeared, and displacement and stress are coincide with the exact solutions.

  • PDF

ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE

  • Ayyildiz, Nihat;Yucesan, Ahmet
    • 대한수학회지
    • /
    • 제43권6호
    • /
    • pp.1339-1355
    • /
    • 2006
  • This paper develops in detail the differential geometry of ruled surfaces from two perspectives, and presents the underlying relations which unite them. Both scalar and dual curvature functions which define the shape of a ruled surface are derived. Explicit formulas are presented for the computation of these functions in both formulations of the differential geometry of ruled surfaces. Also presented is a detailed analysis of the ruled surface which characterizes the shape of a general ruled surface in the same way that osculating circle characterizes locally the shape of a non-null Lorentzian curve.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect

  • Damanpack, A.R.;Bodaghi, M.;Liao, W.H.;Aghdam, M.M.;Shakeri, M.
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.641-665
    • /
    • 2015
  • In this paper, a simple and efficient phenomenological macroscopic one-dimensional model is proposed which is able to simulate main features of shape memory alloys (SMAs) particularly ferro-elasticity effect. The constitutive model is developed within the framework of thermodynamics of irreversible processes to simulate the one-dimensional behavior of SMAs under uniaxial simple tension-compression as well as pure torsion+/- loadings. Various functions including linear, cosine and exponential functions are introduced in a unified framework for the martensite transformation kinetics and an analytical description of constitutive equations is presented. The presented model can be used to reproduce primary aspects of SMAs including transformation/orientation of martensite phase, shape memory effect, pseudo-elasticity and in particular ferro-elasticity. Experimental results available in the open literature for uniaxial tension, torsion and bending tests are simulated to validate the present SMA model in capturing the main mechanical characteristics. Due to simplicity and accuracy, it is expected the present SMA model will be instrumental toward an accurate analysis of SMA components in various engineering structures particularly when the ferro-elasticity is obvious.

GEOMETRIC AND APPROXIMATION PROPERTIES OF GENERALIZED SINGULAR INTEGRALS IN THE UNIT DISK

  • Anastassiou George A.;Gal Sorin G.
    • 대한수학회지
    • /
    • 제43권2호
    • /
    • pp.425-443
    • /
    • 2006
  • The aim of this paper is to obtain several results in approximation by Jackson-type generalizations of complex Picard, Poisson-Cauchy and Gauss-Weierstrass singular integrals in terms of higher order moduli of smoothness. In addition, these generalized integrals preserve some sufficient conditions for starlikeness and univalence of analytic functions. Also approximation results for vector-valued functions defined on the unit disk are given.

The Choice of a Primary Resolution and Basis Functions in Wavelet Series for Random or Irregular Design Points Using Bayesian Methods

  • Park, Chun-Gun
    • Communications for Statistical Applications and Methods
    • /
    • 제15권3호
    • /
    • pp.379-386
    • /
    • 2008
  • In this paper, the choice of a primary resolution and wavelet basis functions are introduced under random or irregular design points of which the sample size is free of a power of two. Most wavelet methods have used the number of the points as the primary resolution. However, it turns out that a proper primary resolution is much affected by the shape of an unknown function. The proposed methods are illustrated by some simulations.

SEPARABLE MINIMAL SURFACES AND THEIR LIMIT BEHAVIOR

  • Daehwan Kim;Yuta Ogata
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.761-778
    • /
    • 2024
  • A separable minimal surface is represented by the form of f(x) + g(y) + h(z) = 0, where f, g and h are real-valued functions of x, y and z, respectively. We provide exact equations for separable minimal surfaces with elliptic functions that are singly, doubly and triply periodic minimal surfaces and completely classify all them. In particular, parameters in the separable minimal surfaces change the shape of the surfaces, such as fundamental periods and its limit behavior, within the form f(x) + g(y) + h(z) = 0.

등기하 해석법을 이용한 설계 민감도 해석 (Shape Design Sensitivity Analysis Using Isogeometric Approach)

  • 하승현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.339-345
    • /
    • 2007
  • 본 논문에서는 등기하 해석법을 이용하여 평면 탄성문제의 변분식을 유도하였다. 등기하 해석법은 새로이 부각되고 있는 해석법으로서 기저 함수가 NURBS(Non-Uniform Rational B-Splines) 로부터 직접 생성되므로 해 공간은 CAD 모델을 구성하는 함수로써 표현된다. 또한 CAD 모델의 B-Spline 기저 함수를 직접 사용하므로 기하학적으로 엄밀한 형상을 표현할 수 있고 요소망의 재구성 없이 해석모델을 정밀화(Refinement)할 수 있는 강점이 있다. 본 논문에서는 이를 확장하여 연속체 기반의 애드조인트 설계 민감도 해석법을 사용하는 등기하 설계민감도 해석법을 유도하였다. 기존의 유한요소 기반형상 최적설계는 형상의 매개화에 어려움을 겪었으나 등기하 기반 최적설계에서는 기하학적 정보가 이미 B-spline 기저함수와 조정점에 포함되어 있으므로 이러한 어려움을 피할 수 있는 잠재력을 가지고 있다. 몇몇 수치 예제를 통해서 등기하 해석법을 사용한 설계 민감도 해석을 수행하였으며 유한차분 민감도와 비교하여 정확성을 확인하였다.

Empirical Choice of the Shape Parameter for Robust Support Vector Machines

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제15권4호
    • /
    • pp.543-549
    • /
    • 2008
  • Inspired by using a robust loss function in the support vector machine regression to control training error and the idea of robust template matching with M-estimator, Chen (2004) applies M-estimator techniques to gaussian radial basis functions and form a new class of robust kernels for the support vector machines. We are specially interested in the shape of the Huber's M-estimator in this context and propose a way to find the shape parameter of the Huber's M-estimating function. For simplicity, only the two-class classification problem is considered.

특이 형상함수를 이용한 Pollution 적응 요소생성 알고리즘 (A Pollution Adaptive Mesh Generation Algorithm Using Singular Shape Functions)

  • 유형선;장준환;편수범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.110-118
    • /
    • 2001
  • In many areas of finite element analysis, elements with special properties are required to achieve maximal accuracy. As examples, we may mention infinite elements for the representation of spatial domain that extend to special and singular elements for modeling point and line singularities engendered by geomeric features such as reentrant corners and cracks. In this paper, we study on modified shape function representing singular properties and algorigthm for the pollution adaptive mesh generation. We will also show that the modified shape function reduces pollution error and local error.

  • PDF