• Title/Summary/Keyword: shape equation

Search Result 1,145, Processing Time 0.025 seconds

Configuration sensitivity analysis of mechanical dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.112-119
    • /
    • 2001
  • Design sensitivity is an important is an important device in improving a mechanical system design. A continuum design consists of the shape and orientation design. This research develops the shape and orientation design sensitivity method. The configura-tion design variables of multibody systems define the shape and orientation changes. The equations of motion are directly differentiated to obtain the governing equations for the design sensitivity. The governing equation of the design sensitivity is formulated as an over determined differential algebraic equation and treated as ordinary differential equations on mani-folds. The material derivative of a domain functional is performed to obtain the sensitivity due to shape and orientation changes. The configuration design sensitivities of a fly-ball governor system and a spatial four bar mechanism are obtained using the proposed method and are validated against those obtained from the finite difference method.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

Evaluzation of Model equation Predicting Roll Force and Roll Power during Hot Rolling (열간압연중 압연하중 및 압연동력 예측 모델)

  • 곽우진;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.308-312
    • /
    • 1999
  • Developed the model equations which calculate roll force, roll power during hot rolling in real time. The variables which mainly effect on the roll force, roll power are shape factor, reduction, roll diameter, roll velocity, strip inlet temperature, carbon content of strip and strip-roll contact friction coefficient. Among these variables roll diameter, roll velocity, inlet temperature, carbon content and friction coefficient can be excluded in interpolated model equation by introducing equation of die force(F'), power(p') of the frictionless uniform plane strain compression which can be calculated without iteration. At the case of coulomb friction coefficient of 0.3, we evaluated coefficient of polynomial equations of {{{{ { F} over {F' } }}}}, {{{{ { Pf} over {Pd }, { Pd} over {P' } }}}} from the result of finite element analysis using interpolation. It was found that the change of values of {{{{ { F} over {F' }, { P} over {P' } }}}} with the friction coefficient tend to straight line which slope depend only on shape factor. With these properties, developed model equations could be extended to other values of coulomb friction coefficient. To verify developed roll force, roll power model equation we compared the results from these model equation with the results from these model equation with the results from finite element analysis in factory process condition.

  • PDF

Solution of Poisson Equation using Isogeometric Formulation

  • Lee, Sang-Jin
    • Architectural research
    • /
    • v.13 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Isogeometric solution of Poisson equation is provided. NURBS (NonUniform B-spline Surface) is introduced to express both geometry of structure and unknown field of governing equation. The terms of stiffness matrix and load vector are consistently derived with very accurate geometric definition. The validity of the isogeometric formulation is demonstrated by using two numerical examples such as square plate and L-shape plate. From numerical results, the present solutions have a good agreement with analytical and finite element (FE) solutions with the use of a few cells in isogeometric analysis.

OBSTACLE SHAPE RECONSTRUCTION BY LOCALLY SUPPORTED BASIS FUNCTIONS

  • Lee, Ju-Hyun;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.831-852
    • /
    • 2014
  • The obstacle shape reconstruction problem has been known to be difficult to solve since it is highly nonlinear and severely ill-posed. The use of local or locally supported basis functions for the problem has been addressed for many years. However, to the authors' knowledge, any research report on the proper usage of local or locally supported basis functions for the shape reconstruction has not been appeared in the literature due to many difficulties. The aim of this paper is to introduce the general concepts and methodologies for the proper choice and their implementation of locally supported basis functions through the two-dimensional Helmholtz equation. The implementations are based on the complex nonlinear parameter estimation (CNPE) formula and its robust algorithm developed recently by the authors. The basic concepts and ideas are simple. The derivation of the necessary properties needed for the shape reconstructions are elementary. However, the capturing abilities for the local geometry of the obstacle are superior to those by conventional methods, the trial and errors, due to the proper implementation and the CNPE algorithm. Several numerical experiments are performed to show the power of the proposed method. The fundamental ideas and methodologies described in this paper can be applied to many other shape reconstruction problems.

Effect of Particle Shape for Powder Flow on Hopper Surface (호퍼 표면에서의 분말 유동에 대한 입자 형상의 영향)

  • Kang, Min-Chang;Bang, Sang-Wook;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.28-34
    • /
    • 2022
  • The flow at the top surface of the hopper is of particular industrial interest. Previously, the velocity distribution inside the hopper was predicted using the simple, void and spot models, which are equations for the particle flow field. However, because these equations cannot predict the velocity distribution at the top surface, a new equation has been recently proposed. This study employed the discrete element method with the changed shape of the particles. Based on the results, the shape of the particle had no effect on the discharge angle and shape of the velocity distribution; however, it greatly affected the size of the velocity distribution and bed thickness of the flowing particles. Therefore, in the future, it is necessary to modify the theoretical equation by considering the shape of the particles.

Decomposition based on Object of Convex Shapes Using Poisson Equation (포아송 방정식을 이용한 컨벡스 모양의 형태 기반 분할)

  • Kim, Seon-Jong;Kim, Joo-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.137-144
    • /
    • 2014
  • This paper proposes a novel procedure that uses a combination of overlapped basic convex shapes to decompose 2D silhouette image. A basic convex shape is used here as a structuring element to give a meaningful interpretation to 2D images. Poisson equation is utilized to obtain the basic shapes for either the whole image or a partial region or segment of an image. The reconstruction procedure is used to combine the basic convex shapes to generate the original shape. The decomposition process involves a merging stage, filtering stage and finalized by compromising stage. The merging procedure is based on solving Poisson's equation for two regions satisfying the same symmetrical conditions which leads to finding equivalencies between basic shapes that need to be merged. We implemented and tested our novel algorithm using 2D silhouette images. The test results showed that the proposed algorithm lead to an efficient shape decomposition procedure that transforms any shape into a simpler basic convex shapes.

Morphing of Composite Plate Using SMA Actuator (형상기억합금 작동기를 이용한 복합재 평판의 형상변형)

  • 김상헌;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation (S-K 구성방정식을 이용한 프린터용 3D Ti-6Al-4V 재료의 유동응력 결정 및 절삭력 예측)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.68-74
    • /
    • 2018
  • Study on the Ti-6Al-4V have been carried out using cutting simulation, and researches for cutting force and chip shape prediction have been actively conducted under various conditions. However, a 3D printer application method using Ti-6Al-4V metal powder material as a high-power method has been studied for the purpose of prototyping, mold modification and product modification while lowering material removal rate. However, in the case of products / parts made of 3D printers using powder materials, problems may occur in the contact surface during tolerance management and assembly due to the degradation of the surface quality. As a result, even if a 3D printer is applied, post-processing through cutting is essential for surface quality improvement and tolerance management. In the cutting simulation, the cutting force and the chip shape were predicted based on the Johnson-Cook composition equation, but the shape of the shear type chip was not predictable. To solve this problem, we added a damaging term or strain softening term to the Johnson-Cook constitutive equation to predict chip shape. In this thesis, we applied the constant value of the S-K equations to the cutting simulation to predict the cutting force and compare with the experimental data to verify the validity of the cutting simulation and analyzed the machining characterization by considering conditions.

Studies on the External Structure of the Cuticle of Silkworm pupa (Bombyx mori L.) (가잠용외피의 외부구조에 관한 조사연구)

  • 윤종관
    • Journal of Sericultural and Entomological Science
    • /
    • v.20 no.2
    • /
    • pp.10-14
    • /
    • 1978
  • There are relatively many reports have been issued on he active movement of cuticle of larva. which tend to protect their body, however, only a few reports have been disclosed on the cuticle of pupal body except the small portion of rectangle which shown tortoise-shell shape. In this connection, many portion of the external structure of pupal cuticle has been studied and the following. results were found: 1) No. spot of rectangle which is sculptured in the surface of cuticle that born by branching. out of the development of cell in imaginal bud of antenna and head were found. However, in the compound eye of net shaped sculpture was found in the (equation omitted) shaped parts which holding. the diameter of about 8u and the surrounding area has the small bump and the one is dark brown coloured comparing with shape. 2) The sculpture shape of thorax is a little different than in the head. However, (equation omitted) portion is varies from the segment to segment. In general, it is not very clear than the compound eye in the head, the dark brown bump shape is slowly fade a from the prothorax, mesothorax to metathorax. 3) The surface of intersegment membrane is colourless or slightly yellow, and the entire surface has stripped marking with thine lines. 4) In the abdominal segment, there are many and small sculptures in net shape around the (equation omitted) shape portions. 5) The size of sculpture in (equation omitted) portion of abdomen is smaller than one in thorax, and in the same segment, the dorsal is smaller than abdomen and the rear portion of the segment is larger than the front of segment. 6) After the 7th abdominal segment, no intersegmental membrane is found and the cuticle of the external structure is the same as external structure of the segment. 7) The seta is not found in head, compound eye, antenna and wing which portions were subdivided by development of imagined bud of the cell, no seta is found in cuticle of the segment in the general cell of the larva stage and also in the dorsal and intersegmental membrane.

  • PDF