DOI QR코드

DOI QR Code

Decomposition based on Object of Convex Shapes Using Poisson Equation

포아송 방정식을 이용한 컨벡스 모양의 형태 기반 분할

  • Kim, Seon-Jong (Dept. of Applied IT and Engineering, Pusan National University) ;
  • Kim, Joo-Man (Dept. of Applied IT and Engineering, Pusan National University)
  • 김선종 (부산대학교 IT응용공학과) ;
  • 김주만 (부산대학교 IT응용공학과)
  • Received : 2014.09.01
  • Accepted : 2014.10.10
  • Published : 2014.10.31

Abstract

This paper proposes a novel procedure that uses a combination of overlapped basic convex shapes to decompose 2D silhouette image. A basic convex shape is used here as a structuring element to give a meaningful interpretation to 2D images. Poisson equation is utilized to obtain the basic shapes for either the whole image or a partial region or segment of an image. The reconstruction procedure is used to combine the basic convex shapes to generate the original shape. The decomposition process involves a merging stage, filtering stage and finalized by compromising stage. The merging procedure is based on solving Poisson's equation for two regions satisfying the same symmetrical conditions which leads to finding equivalencies between basic shapes that need to be merged. We implemented and tested our novel algorithm using 2D silhouette images. The test results showed that the proposed algorithm lead to an efficient shape decomposition procedure that transforms any shape into a simpler basic convex shapes.

본 논문에서는 2D 실루엣 영상을 컨벡스 형태의 중첩으로 분할시키는 방법을 제안한다. 컨벡스 형태는 2D 실루엣 영상을 분해하기 위한 기본적인 구조를 제공하는데 사용된다. 컨벡스 형태를 얻기 위하여 포아송 방정식을 이용하였다. 연속적인 포아송 방정식을 적용시킴으로써 다양한 형태의 컨벡스 형태를 얻을 수 있으며, 전 실루엣 영역으로 확장하여 여러 개의 컨벡스 형태를 얻을 수 있다. 얻어진 컨벡스 형태를 중첩시키면 원래의 실루엣 영상을 얻을 수 있다. 알고리즘은 분해, 머징, 필터링 및 타협 과정을 통하여 순서적으로 실행된다. 제안된 알고리즘은 다양한 실루엣 영상에 적용하여 그 타당성을 알아보았다. 실험결과, 제안된 알고리즘은 복잡한 형태를 갖는 영상을 단순한 컨벡스 형태의 조합으로 분해시킬 수 있어서 영상을 표현하는데 유용하게 사용될 수 있다.

Keywords

References

  1. D. Zhang and G. Lu, "Review of shape representation and description techniques," Pattern Recognition, vol. 37, pp. 1-19, 2004. https://doi.org/10.1016/j.patcog.2003.07.008
  2. Pitas, I. and Venetsanopoulos A. N., "Morphological shape decomposition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 38-45, Jan. 1990. https://doi.org/10.1109/34.41382
  3. L. J. Latecki and R. Lakamper, "Convexity rule for shape decomposition based on discrete contour evolution," Computer Vision and Image Understanding, vol.73, no.3, March, pp. 441-454, 1999. https://doi.org/10.1006/cviu.1998.0738
  4. Q. Huang, M. Wicke, B. Adams, and L. Guibas, "Shape decomposition using modal analysis," EUROGRAPHICS, vol. 28, no.2, 2009.
  5. L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt, "Shape representation and classification using the Poisson equation," Computer Vision and Pattern Recognition, vol. 2, pp. 61-67, 2004.
  6. B. Schachter, "Decomposition of polygons into convex sets," IEEE Transaction on Computers, vol. 27, no. 11, pp. 1078-1082, Nov. 1978.
  7. A. Ion, S. Peltier, Y. Haxhimusa, and W. G. Kropatsch, "Decomposition for efficient eccentricity transform of convex shapes," LNCS, vol. 4673, pp. 653-660, 2007.
  8. S. B. Tor and A. E. Middleditch, "Convex decomposition of simple polygons,"ACM Transactions on Graphics, vol. 3, no.4, Oct. 1984.
  9. R. Juengling and M. Mitchell, "Combinatorial shape decomposition," LNCS, vol. 4842, pp. 183-192, 2007.
  10. J. Zeng, R. Lakaemper,X. Yang and X. Li, "2D shape decomposition based on combined skeleton-boundary features," LNCS, vol.5359, pp. 682-691, 2008.
  11. Proefschrift, Shape Decomposition and Retrievals, ISBN 90-393-3944-9, 2005.
  12. J.-M. Lien and N. Amato, Simultaneous shape decomposition and skeletonization, Technical Report TR05-015, Texas A&M University, Dec. 2005.
  13. H. Ying, J.-Y. Song, "Recognition model of road signs using image segmentation algorithm" The Journal of The Institute of Internet, Broadcasting and Communication, vol. 13 no. 2 pp. 233-237, 2013.4. https://doi.org/10.7236/JIIBC.2013.13.2.233
  14. S.-O. Choi et al, "Smart Mobile Blackbox DVR in Car Environment" The Journal of The Institute of Internet, Broadcasting and Communication, vol. 13, no. 5, Oct. 2013. https://doi.org/10.7236/JIIBC.2013.13.5.9
  15. X. Bai, "Skeleton-based shape classification using path similarity," International Journal of Pattern Recognition and Artificial Intelligence, vol. 22, no.4, pp.733-746 .2008. https://doi.org/10.1142/S0218001408006405
  16. S.-J. Kim and S.-C. Lee, "Development of inspection system for surface of a shock Aasorber rod using machine vision" Journal of the Korea Academia-Industrial cooperation Society(JKAIS), vol. 15, no. 6, pp. 3416-3422, 2014. https://doi.org/10.5762/KAIS.2014.15.6.3416
  17. J.-M. Lien and N. M. Amato, "Approximate convex decomposition of polygon," Special Issue on the 20th ACM Symposium on Computational Geometry, pp. 100-113, 2006.
  18. S.-J. Kim, J.-M. Kim, and S. Belkasim, " Overlapped decomposition of convex shapes for shape representation", ICCPND, pp. 1- 4, July 2014.
  19. H. Jabori, M. Rahmati and A. Mirzaei, "Shape recognition by clustering and matching of skeletons," Journal of Computers, vol. 3, no.5, May 2008.
  20. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The quick hull algorithm for convex hulls," ACM Transactions on Mathematical Software(TOMS), vol. 22, pp. 469-483, Dec. 1996. https://doi.org/10.1145/235815.235821
  21. B. L. Buzbee, F. W. Dorr, J. A. George and G. H. Golub, "The direct solution of the discrete Poisson equation on irregular regions," SIAM Journal on Numerical Analysis, vol. 8, no. 4, pp. 722-736, Dec. 1971. https://doi.org/10.1137/0708066