• Title/Summary/Keyword: shape coefficient

Search Result 1,129, Processing Time 0.026 seconds

A Study on the Wedge shape Detector of Very High Resolution Positron Emission computer Tomography (초고해상도 양전자 방출 CT의 쐐기형 검출기에 관한 연구)

  • 이행세;이태원
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.44-54
    • /
    • 1985
  • The high resolution of positron emission tomography, in particular, requires the use of detector crystals of narrow width but still with sufficiently high detection efficiency. If the crystal width is reduced to several millimeters, degradation of detection efficiency and leakage coefficient becomes significant, particularly in case of obliquely incident photons. Alleviation of such a problem can be made possible by modification of the detector shape from the conventional rectangular type to a wed농e type. The Proposed wedge shape makes the absorption length longer for obliquely incident photons, thus increasing the detection efficiency and suppressing leakage coefficient. For the BGO detectors of 4-8mm width, the computer simulation result of the system using wedge detectors reveals resolution improvement to the system using conventional detectors. For the system composed of 200 BGO detectors of 8mm width with 2 point sampling motion, the simulation resolution system using conventional detectors. For the very high resolution system of 3-7mm FWHM, the characteristics of the detector shape and size is studied by computer simulation.

  • PDF

Performance Evaluations of a Novel Prototype of High Frequency Non-Contact Power Transformer

  • Gamage, Laknath;Ishitobi, Manabu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this paper, a practical implementation to reduce leakage flux of a high-frequency inverter based non-contact type power transformer composed of EE-shape ferrite cores is presented for key technology of the next generation medical use X-ray CT scanner system. Design consideration for the unique structure of the non-contact power transformer with 900mm in diameter is also introduced. The complete non-contact transformer is actually arranged by several blocks of the magnetic circuit assembled by using 10 small EE shape cores with 120mm in length. It is experimentally and analytically discussed from a reduced leakage flux viewpoint related to its inductively coupling coefficient. A practical method to lower the leakage flux is described based on effective Copper-Sheet- Treatment placed on EE shape ferrite cores of magnetic circuit.

Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion

  • Yang, X.L.;Qin, C.B.
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.503-515
    • /
    • 2014
  • On the basis of Hoek-Brown failure criterion, a numerical solution for the shape of collapsing block in the rectangular cavity subjected to seepage forces is obtained by upper bound theorem of limit analysis. The seepage forces obtained from the gradient of excess pore pressure distribution are taken as external loadings in the limit analysis, and the pore pressure is easily calculated with pore pressure coefficient. Thus the seepage force is incorporated into the upper bound analysis as a work rate of external force. The upper solution of the shape of collapsing block is derived by virtue of variational calculation. In order to verify the validity of the method proposed in the paper, the result when the pore pressure coefficient equals zero, and only hydrostatic pressure is taken into consideration, is compared with that of previous work. The results show good effectiveness in calculating the collapsing block shape subjected to seepage forces. The influence of parameters on the failure mechanisms is investigated.

Statistical Analysis for Fatigue Lifetime of Ceramics (세라믹스의 피로수명에 대한 통계적 분석)

  • 박성은;김성욱;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.927-934
    • /
    • 1997
  • Static and cyclic fatigue tests were carried out for alumina specimen to study the statistical analyses (normal, lognormal and Weibull distribution) of fatigue lifetime data and nominal initial crack length data. Fatigue lifetime data followed Weibull distribution better than normal or lognormal distribution, for the shape parameter of the notched specimen was larger than that of the unnotched specimen. The nominal initial crack length data obtained from fatigue lifetime followed the lognormal and Weibull distribution better than normal distribution, for the coefficient of variation of the unnotched specimen was larger than that of the notched specimen, and shape parameter of unnotched specimen was smaller than that of the notched specimen.

  • PDF

A DESIGN OPTIMIZATION STUDY OF BLUNT NOSE HYPERSONIC FLIGHT VEHICLE MINIMIZING SURFACE HEAT-TRANSFER RATE AND DRAG (표면 열전달율과 항력을 최소화한 극초음속 비행체 선두부 형상 최적설계)

  • Lim S.;Seo J. I.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.27-35
    • /
    • 2005
  • A design optimization of hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. CFD method is linked to numerical optimization method by using a Bezier curve and a design optimization of blunt nose hypersonic flight vehicle has been studied. Heat transfer coefficient and drag coefficient are selected as objective functions or design constraints. The Bezier curve-based shape function was applied to blunt body shape.

Shape Optimization of a Segment Ball Valve Using Metamodels

  • Lee, Jin-Hwan;Lee, Kwon-Hee
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.553-558
    • /
    • 2010
  • This study presents the optimization design process of a segment ball valve that involves the reduction of the flow resistance coefficient and the satisfaction of the strength requirement. Numerical analysis of fluid flow and structural analysis have been performed to predict the flow resistance coefficient and the maximum stress of a segment ball valve. In this study, a segment ball valve incorporating the advantages of a ball valve and a butterfly valve has been devised. In general, ball valves are installed in a pipe system where tight shut off is required. Butterfly valves having smaller end-to-end dimension than ball valve can be installed in narrow spaces in a pipe system. The metamodels for the shape design of a segment ball valve are built by the response surface method and the Kriging interpolation model.

Study on Dependence of Friction Characteristics of Sintered Brake Friction Materials on Graphite Shape and Ratio with regard to Speeding up Rapid Transit System (도시철도 고속화에 대비한 금속계 소결마찰재에서의 흑연 형상 및 비율에 따른 마찰특성 연구)

  • Kim, Young Kyu;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.242-247
    • /
    • 2013
  • This study aims to establish the fundamental basis for the design of materials used in high-speed trains, by using a lab-scale dynamometer to evaluate the characteristic behavior of metallic sintered friction materials in relation to the shape of graphite. The test results clearly demonstrate that when flake graphite and granular graphite are added equivalently, the average coefficient of friction is much lower, and it is less influenced by speed variation; moreover, friction wear is observed to be insignificantly low. Adding flake graphite increases the coefficient of friction, which leads to higher friction wear. In addition, the roughness of the disc surface was equivalent regardless of the shape of the graphite.

A Study of a New Anisoparametric In-Plane Deformable Curved Beam Element (새로운 부등매개변수 면내변형 곡선보 요소에 관한 연구)

  • Yoo, Jae-Hyeong;Yoo, Seung-Won;Moon, Won-Joo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.405-410
    • /
    • 2000
  • Generally, it is known that the reduced integration, modified shape function anisoparametric and non-conforming element can minimize the error induced by stiffness locking phenomenon in the finite element analysis. In this study, new anisoparametric curved beam elements are introduced by using different shape functions in each displacement field. When these shape functions are substitute for functional, we can expect that the undulate stress patterns are not appeared or minimized because there is no unmatched coefficient in the constrained energy equation. As a result of numerical test, the undulate stress patterns are disappeared, and displacement and stress are coincide with the exact solutions.

  • PDF

A study on Discharge Characteristics of Rotating Discharge Hole with inlet edge shape (입구 형상에 따른 회전 송출공의 송출특성 연구)

  • Kang, Se-Won;Ha, Kyung-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.746-752
    • /
    • 2000
  • A study on discharge characteristics of a rotating discharge hole is very important to enhance the performance of an induction motor which have external forced cooling system. The discharge characteristics of rotating discharge holes are influenced by rotating speed, length-to-diameter ratio, inlet shape of rotor holes, etc. An experimental study on the effect of chamfered inlet edge of rotor inlet part with various depth-to-diameter and inlet chamfered edge angle is conducted. Depth-to-diameter ratios range from 0 to 0.5 and inlet chamfered edge angle range from 0 to 60. As a result, there is an optimal design point of inlet chamfered edge depth. And the inlet edge angle far maximum discharge coefficient is influenced mainly by the rotating speed of discharge holes.

  • PDF

Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer (난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.