• Title/Summary/Keyword: shaft model

Search Result 577, Processing Time 0.028 seconds

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

저속 2행정디젤엔진의 가이스링거형 비틀림 진동댐퍼 동특성 및 성능에 관한 연구 (A Study on the Dynamic Characteristics and Performance of Geislinger Type Torsional Vibration Damper for Two Stroke, Low-speed Diesel Engine)

  • 이돈출;이병운;박용남;박병학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.17-28
    • /
    • 1992
  • During the last decade, engine makers have developed new types or increasing power rate engines to enlarge theirs marketing shear in two stroke, low-speed diesel engines. As the results, these engines have increased the additional stresses due to torsional vibration more than old model engines. The torsional vibration dampers are necessary in order to reduce heigher additional stresses of intermediate and crank shaft in these engine. In this paper, the optimum designing of Geislinger type torsional Damper has been carried out, based on the theoretical conception. The dynamic characteristics and performance fo dampers are estimated by the measuring results obtained with the monitoring system of dampers and additional stresses of propulsion shafts.

  • PDF

액체로켓엔진용 터보펌프의 고온 성능시험 (Hot Test of a Turbopump for a Liquid Rocket Engine)

  • 홍순삼;김대진;김진선;김진한
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.933-938
    • /
    • 2009
  • Hot test of a full-scale turbopump for a 30-ton-thrust liquid rocket engine was carried out. The turbopump is composed of an oxidizer pump, a fuel pump, and a turbine on a single shaft. Model fluid was used in the test, that is, hot air for the turbine and water for the pumps. The turbopump was operated stably at full speed for 120 seconds. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test are compared with those from the turbopump component tests which were performed at about half of the design rotational speed.

지지구조물을 고려한 로터-베어링 시스템의 동 특성해석 (Dynamic Characteristics Analysis of Rotor-Bearing System with Support Structures)

  • 박성훈;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.547-550
    • /
    • 1997
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consist of shaft elements, rigid disk, flexible bearing and support structures. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficient are calculated for 3 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system included effect of bearing coefficient and support structures are calculated.

  • PDF

원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 응력 및 진동해석 (Stress and Vibration Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge)

  • 한근조;이성욱;심재준;한동섭;안찬우;서용권;김태형
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.118-125
    • /
    • 2003
  • In this study, we carried out the finite element analysis for the screw of centrifuge that is the weakest part of the centrifuge for sewage management. Centrifugal force caused by rotation with velocity of 4000rpm was applied at the screw. Structural analysis was done with respect to the change of the ratio of blade pitch($R_P$), shaft diameter($R_D$) and extended hole($R_E$). When the area of circular hole is equal to that of extended holes, maximum equivalent stresses in the screw with circular and extended circular hole were compared. And then natural frequency analysis was executed for the same model. Three mode shapes were used to explain the vibration characteristics of each screw. Convergence study was accomplished fur more accurate results.

Universal Joint를 갖는 구동축 시스템의 비틀림 진동 감소를 위한 Damper의 적정설계에 관한 연구 (A Study on Design of a Damper for Reducing Torsional Vibrations of a Driveline with Universal Joints)

  • 박보용;송창섭;강효식
    • 한국정밀공학회지
    • /
    • 제8권4호
    • /
    • pp.137-145
    • /
    • 1991
  • A universal joint is a connecting device of two hinges which can transmit torque from one shaft to another at fixed or at varying angles of intersection. It has been used properly not only as rotational but also as intermittent motion. For the particular kinematics condition of a universal joint, torsional and bending vibrations are produced excessively in an elastic driveline. In this paper only the torsional vibration behavior of a driveline with universal joints is analyzed numerically with the discrete model and a design method of the dynamic vibration damper is proposed, in order to reduce torsional vibrations especially in resonance region as a result of parametric variation.

  • PDF

복잡한 지지구조의 유연성을 고려한 HDD 스핀들 시스템의 유한요소 동특성 해석 (Finite Element Analysis of Dynamic Characteristics of HDD Spindle System Considering Supporting Structure with Complex Shape)

  • 한재혁;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.312-318
    • /
    • 2001
  • This paper suggests the finite element method to analyze the dynamic characteristics of a rotating HDD system including the supporting structure with general shape. The flexible supporting structure was modeled by tetrahedra elements to produce a finite element model of disk-spindle-shaft-housing system and the dynamic characteristics of the HDD system was investigated due to the change of rotating speed. The validity of the presented method was verified by the modal testing. The supporting structure has an crucial effect on lower modes for HDD system, so that it is required to consider the supporting structure to accurately analyze the dynamic characteristics of HDD system.

  • PDF

볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석 (Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer)

  • 이준영;조성오;김태식;박윤서
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.670-682
    • /
    • 1998
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of washing machine effectively. The test results match with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variableand can reduce the design cycle sharphy. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

스퍼 기어계의 방사소음 예측 (Prediction of Radiated Noise from a Spur Gear System)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.334-339
    • /
    • 2000
  • In order to predict the noise of the spur gear system, a simplified model of spur system including the housing is studied. The spur gear is modeled as a single degree of freedom system. The shaft-housing system is modeled as a clamped circular plate connected with a beam. The moment components of the beam excited by the spur gear mesh force are considered in the calculation of plate vibration and radiated noise. The out-of-displacements of the clamped circular plate due to the r-direction moment and ${\theta}$-direction moment are calculated. Radiated noise from the plate in the air is also calculated using Rayleigh integral. Using the numerical example, the numerical validation of the analytical procedure on the noise prediction are given.

  • PDF

ER 효과를 이용한 회전축계의 진동제어 (Vibration Control of Rotor Systems Using ER Effect)

  • 임승철;박상민;채정재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1119-1126
    • /
    • 2000
  • This paper is concerned with the design and application of an Electro-Rheological(ER) fluid damper to suppress the vibration of a rotor system. The system is flexible with a slender shaft and a thin disk, being supported by two ball bearings. In addition, to investigate the system performances also in the high speed range, the driving torque is made transmit through a speed increasing gear train. Along with the experiments, to predict and compare the ER damper effect, the rotor system is simulated as to its free and forced vibration characteristics by means of a finite element method code, which is assembled with the mathematical model of the designed ER damper.

  • PDF