• Title/Summary/Keyword: shaft efficiency

Search Result 264, Processing Time 0.025 seconds

An Experimental Study on the Acoustic Characteristics of a Reciprocal Compressor (냉장고용 왕복동식 압축기의 소음특성에 관한 실험적 연구)

  • 박철희;차용웅;홍성철;주재만;김영헌;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.196-201
    • /
    • 1997
  • In point of noise and vibration, it is easy to occur a noise and vibration, because the reciprocal compressor is composed of crank shaft, rod piston and etc. Therefore, it is important to understand the mechanism of reciprocal compressor. In this study, we measured the sound pressure level of compressor. There are two dominent frequencies. The first of one results from the suction part. In suction process, the suction valve flutteres, and it produces the noise of the first frequency. The other results from the structural vibration of the shell resonated by discharge pipe. Thus, to reduce the noise of compressor, it will be most efficiency to redesign muffler for the first frequency and discharge pipe for the second frequency.

  • PDF

Control of torsional vibration for propulsion shafting with delayed engine acceleration by optimum design of a viscous-spring damper (점성-스프링 댐퍼 최적화 설계를 이용한 엔진 증속지연 특성을 갖는 추진축계 비틀림진동 제어)

  • Kim, Yang-Gon;Hwang, Sang-Jae;Kim, Young-Hwan;Kim, Sang-Won;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.580-586
    • /
    • 2016
  • The ultra-long stroke engine was developed to generate greater power at lower speeds than previous designs to enhance the propulsion efficiency. The torsional exciting force, on the other hand, was increased significantly. Therefore, it is possible to control the torsional vibration of its shaft system equipped with the fuel efficient ultra-long stroke engine by adopting a damper although the torsional vibration could be controlled adequately by applying tuning and turning wheels on the engine previously. In this paper, the dynamic characteristics of a viscous-spring damper used to control the torsional vibration of the corresponding shaft system are reviewed and then examined to determine what vibration characteristics might be used to optimize the viscous-spring damper. In some cases, operators of eco-ships have recently experienced the problem of delayed RPM acceleration. It has been suggested that the proper measures for controlling the torsional vibration in the shaft system should involve adjusting the design parameters of its damper determined by the optimum damper design theory to avoid the fatigue damage of shafts.

Blasting Design for Large Shaft in Urban Area Considering Noise and Vibration -Singapore Transmission Cable Tunnel EW2- (소음 및 진동을 고려한 도심지 내 대단면 수직구 발파설계 사례 -싱가포르 Transmission Cable Tunnel EW2 공구-)

  • Kim, Julie;Lee, Hyo;Kim, Dave;Ko, Tae-Young;Lee, Simon
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • With increasing needs in power, Singapore is requiring stronger power transmission. Singapore Transmission Cable Tunnel is underground tunnel for transmission system installation such as 400 kV cable. This Transmission Cable Tunnel is 35 km long in total. The North-South Transmission Cable Tunnel is 18.5 km long and there is a total of three (3) contracts; NS1, NS2 and NS3 in respect of the design and construction. The East-West Transmission Cable Tunnel is 16.5 km long, and also there is a total of three (3) contracts; EW1, EW2 and EW3. Among of them, SK E&C has been awarded and operating contract EW2 and NS2. In scope of works, each contract has 3 to 4 shafts which connect aboveground and underground high volt cable and those shafts are used as TBM launching shafts during construction. Transmission Cable Tunnel is undercrossing middle of Singapore and most of shafts are located in urban area. Thus, optimal blasting design satisfying high blasting efficiency as well as blasting vibration limit of Singapore is highly required. Blasting design for large shaft of Singapore Transmission Cable Tunnel follows blasting vibration limits in Singapore and reflects our blasting engineering skills. With Singapore Transmission Cable Tunnel Contract EW2, it is expected that our excellent blasting engineering and performance skills can be delivered to the world.

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine (가스엔진용 유기랭킨사이클의 설계 및 제작)

  • Lee, Minseog;Baek, Seungdong;Sung, Taehong;Kim, Hyun Dong;Chae, Jung Min;Cho, Young Ah;Kim, Hyoungtae;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Minimization of Wave-making Resistance for "Inclined Keel" Containership ("Inclined Keel" 컨테이너선의 조파저항 최소화를 위한 선형최적화)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Kim, Hee-Jung;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • Ever increasing fuel prices, almost doubled in the last three years, and global pressure to reduce their environmental impact have been enforcing commercial vessel operators and designers to re-assess current vessel designs with emphasis on their propulsion systems and operational practices. In this paper the "Inclined Keel Hull (IKH)" concept, which facilitates to use larger propeller diameter in combination with lower shaft speed rates and hence better transport efficiency, is explored for a modern 3600 TEU container vessel with the aim of fitting an 13 % larger diameter propeller (and hence resulting 20% lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration. It appears that successful application of the "inclined keel Hull" concept is a fine balance amongst the maximum gain in propulsive efficiency, minimum increase in hull resistance and satisfaction of other naval architectural and operational requirements. In order to make the concept economically more viable, this paper concentrates on the fore body design with the possible combination of increase of volume in its fore body to recover the expected volume loss in the aft body due to the space for larger propeller and its low wave-making resistance to minimize the efficiency loss using a well-established optimization software.

An Experimental Study on Power Transmission Characteristics Flow Rate in Fluid Couplings (유체커플링에서 유량과 동력전달특성에 관한 실험적 연구)

  • Pak, Yong-Ho;Moon, Dong-Cheol;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 1995
  • The fluid coupling combined with a pump and a turbine have many merits compared with other couplings, their uses are increesing rapidly in various industrial fields at home and abroad in pursuit of high-speed more efficiency durability of various mechanic devices. The authorities concerned have recognized the improtance of the fluid coupling and supported its developement and now some trial products began to show up. As the structrue and characteristics of the fluid coupling have little similarity to other kinds of couplings and its fluid behavior is unique, so its characteristic analysis is expected to be difficult. Until now no satisfactory study on the characteristics of the fluid coupling seems to have been conducted at home, so a study on this field needs to be done urgently. The purpose of this research is to construct the experimental test set-ups and establish a series of performance test program for the domestically developed fluid couplings and to provide a software to store and utilize these experimental data which can be used to improve the performance of the fluid coupling and solve on the job problems confronted in operation. The performance test consists of taking measurment of torque, rpm and efficiency of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft and finally infestigating the torque, rpm and efficiency characteristics of the fluid coupling with respect to these parameters. The results of this study can contribute valuable references to the development of variable speed fluid coupling and torque converter currently pursued by the domestic industry.

  • PDF

Simulation of a two-stroke diesel engine for propulsion in waves

  • Yum, Kevin Koosup;Taskar, Bhushan;Pedersen, Eilif;Steen, Sverre
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.351-372
    • /
    • 2017
  • Propulsion in waves is a complex physical process that involves interactions between a hull, a propeller, a shaft and a prime mover which is often a diesel engine. Among the relevant components, the diesel engine plays an important role in the overall system dynamics. Therefore, using a proper model for the diesel engine is essential to achieve the reasonable accuracy of the transient simulation of the entire system. In this paper, a simulation model of a propulsion system in waves is presented with emphasis on modeling a two-stroke marine diesel engine: the framework for building such a model and its mathematical descriptions. The models are validated against available measurement data, and a sensitivity analysis for the transient performance of the diesel engine is carried out. Finally, the results of the system simulations under various wave conditions are analyzed to understand the physical processes and compare the efficiency for different cases.

A Numerical Analysis for Optimal Design of Road Generator System (도로용 발전장치 최적화 설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • In this study, a modeling method is based on representing a road generation system with several rigid bodies, i.e, pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator. The simulation software is developed to evaluate the performance of a road generation system. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The parametric dimensions are included as capacity, length, and angle of equipment. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, power, out energy etc. Consequently, before manufacturing system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.

Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control (제어관점에서의 부하감지형 유압시스템의 특성)

  • 김성동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.