• Title/Summary/Keyword: shaft 효율

Search Result 119, Processing Time 0.023 seconds

Damping characteristics of high efficiency direct-coupled propeller with 10MW class (고효율 직결식 10MW급 프로펠러의 감쇠특성에 관한 연구)

  • Kim, Yang-Gon;Hwang, Sang-Jae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.310-315
    • /
    • 2017
  • Recently constructed ships are equipped with high efficiency propeller for low fuel consumption and comfortable operation. Based on the torsional vibration analysis of the shaft system of the high efficiency propeller, using the propeller damping method considering the characteristics of previous propeller designs, a considerable amount of analysis errors are found to be generated. These errors are expected to increase as the development of high efficiency vibration propellers continues. In this paper, errors in torsional vibration analysis, in accordance with various propeller damping methods, are reviewed. In addition, a propeller damping method suitable for use at present is suggested by reviewing the comparison results of analysis and measurement values according to the propeller damping methods for vessels adopting the high efficiency direct-coupled propeller with 10MW class.

An Analysis on the Design and Speed Performance of a One-man Boat (1인승 소형 보트 설계 및 속도성능 분석)

  • Park, Dong-Woo;Park, Gyeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.552-557
    • /
    • 2014
  • The objective of the This study is to access the speed performance employing the sea trial test and CFD with the our own designed and manufactured one-man boat. The overall design process including hull form design was explained. The sea trial was carried out with a manufactured boat in the clam sea. Brake power at the design speed of a boat through the sea trial was measured as 1680 W. The flow computation was conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The result of computation provided the information that residual resistance is bigger than fraction's at design speed. The total efficiency were predicted based on the sea trial and CFD. The Total efficiency was divided into shaft efficiency and quasi-propulsive efficiency. By using quasi-propulsive efficiency, it becomes possible to predict speed performance of boat in future. The results can provide information regarding hull form design, performance analysis and development of a boat in future.

The Influence of Zoning at Shafts of Super-tall Buildings on the Stack Effect and Stairwell Pressurization (초고층건물 샤프트의 수직구획이 연돌효과 및 급기가압 성능에 미치는 영향)

  • Kim, Beom-Kyue;Kim, Hak-Jung;Yeo, Yong-Ju;Leem, Chae-Hyun;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.92-98
    • /
    • 2012
  • This study analyzed the effect of zoning on the distribution of pressure differentials caused by stack effect and air pressurization in a center core type of 80 story super-tall building. The results showed that maximum pressure difference more than 250 Pa can be generated by stack effect without zoning. Zoning of stairwell only resulted in 10 Pa reduction of maximum pressure difference, however, zoning of both stairwell and EV shaft especially at the same floor revealed 50 % reduction in stack effect. It was also analysed that the minimum required air flow rate occurred when the stairwell temperature reached 50 % of temperature difference between indoor and outdoor.

An Optimal Frequency Condition for An Induction Hardening for An Axle Shaft using Thermal-Electromagnetic Coupled Analysis (열-전자기 연성해석을 이용한 차축에 대한 최적의 고주파 열처리 주파수 조건에 대한 연구)

  • Choi, Jin Kyu;Nam, Kwang Sik;Kim, Jae Ki;Choi, Ho Min;Lee, Seok Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.207-212
    • /
    • 2016
  • High-frequency induction hardening (HFIH) is used in many industries and has a number of advantages, including reliability and repeatability. It is a non-contact method of providing energy-efficient heat in the minimum amount of time without using a flame. Recently, HFIH has been actively studied using the finite-element method (FEM), however, these studies only focused on the accuracy of the analysis. In this paper, we analyzed HFIH by using a variable frequency based on the conditions of the same shape and input power then comparing the analysis results to experimental results. The analysis and experimental results indicate that the hardening depths are approximately the same using the optimal frequency of 3kHz.

Muscle Activity of Cycling Movements at Different Pedal Shaft Widths (사이클 운동시 페달 샤프트 너비에 따른 근육 활동 비교)

  • Lee, Min-Hyung;Chae, Woen-Sik;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.173-182
    • /
    • 2004
  • 본 연구의 목적은 사이클 운동 시, 3가지 다른 길이의 페달 샤프트 (표준형, 5.08 cm, 10.16 cm)가 근육활동에 미치는 영향을 근전도 측정을 통해 비교 분석하는데 있다. 사이클링을 활동적으로 하는 여학생 5명을 피험자로 선택하여 대퇴지근(RF), 외측광근(VL), 내측광근(VM) 대퇴이두근(BF)을 표면전극을 사용하여 관찰하였다. 자료 분석을 위해 두 대의 S-VHS 카메라 (Panasonic Digital 5000)를 사용하여 사이클링 동작을 촬영하였다. 연구의 목적을 위해 각 조건에 대한 표준화된 평균 및 최대 근전도치가 계산되어졌다. 각각의 변인에 대해 페달 샤프트의 길이에 따른 근전도치의 차이점을 분석하기 위해 반복측정에 의한 일원변량분석을 사용하였으며, 통계적 유의성이 있을 경우 Newman-Keuls 사후검증을 실시하였다. 일반적으로 5.08 cm 길이의 페달 샤프트를 사용했을 경우 표준형의 페달 샤프트와는 다르게 모든 하지근의 적분 근전도치가 줄어드는 것으로 나타났다. 페달 샤프트의 길이가 길어짐에 따라 외측광근의 적분 근전도치가 통계적으로 유의하게 낮게 나타났고, 5.08 cm 길이에서 대퇴이두근의 적분 근전도치가 통계적으로 유의하게 낮게 나타났다. 페달 샤프트 길이에 따른 최대 근전도치의 통계적 유의성을 찾을 수 없었지만, 일반적으로 5.08 cm 길이의 페달 샤프트를 사용할 때 최대 근전도치가 가장 낮게 나타났다. 본 연구의 결과, 페달 샤프트의 길이가 하지근의 활동정도와 형태를 변화시킨다는 것을 알 수 있었으며, 하지관절의 부하에 영향을 미치는 것으로 사료되어진다. 이에 따라, 개인의 해부 구조학적인 면을 고려한 페달 샤프트의 길이 조절은 효율적이며 안정적인 사이클링 동작을 수행하는데 많은 도움이 될 수 있을 것이다.

Development of intelligent fault diagnostic system for mechanical element of wind power generator (지능형 풍력발전 기계적 요소 고장진단 시스템 개발)

  • Moon, Dea-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target (수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.629-634
    • /
    • 2009
  • In real-time system application, the feature extraction and scoring algorithm for classification of the passive sonar target has the following problems: it requires an accurate and efficient feature extraction method because it is very difficult to distinguish the features of the propeller shaft rate (PSR) and the blade rate (BR) from the frequency spectrum in real-time, it requires a robust and effective feature scoring method because the classification database (DB) composed of extracted features is noised and incomplete, and further, it requires an easy design procedure in terms of structures and parameters. To solve these problems, an intelligent feature extraction and scoring algorithm using the evolution strategy (ES) and the fuzzy theory is proposed here. To verify the performance of the proposed algorithm, a passive sonar target classification is performed in real-time. Simulation results show that the proposed algorithm effectively solves sonar classification problems in real-time.

Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC (유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

An analysis on the energy and daylighting efficiencies of rehabilitated Linde-Robinson Laboratory : Solar Telescope Daylighting with Coelostat (복원된 Linde-Robinson Laboratory의 에너지 및 채광시스템 효율 분석 : Coelostat Solar Telescope Daylighting)

  • Han, Hyun Joo;Selkowitz, Stephen;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.53-63
    • /
    • 2014
  • Caltech's Linde-Robinson Laboratory was originally built in 1932 featuring a Spanish mission-style design, whose function was to facilitate a solar observatory with a coelostat solar telescope dome and a solar shaft extending from the roof to more than 36.58m below the ground. The building has now been transformed into a cutting-edge center for research and instruction in global environmental science that retains its original character while setting new standards in energy efficiency and green design. It is the first LEED Platinum lab in the USA for renovation of a historical research building, consuming only one-sixth of the energy that the lab's comparable laboratories do. This work introduces various energy and environmental strategies hired for its sustainable rehabilitation and, especially, examines the functional validity of solar telescope daylighting by a coelostat. Observations were made on the llumination of underground floors, where illuminances of 40~50 lx were measured.

The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting (선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석)

  • Yeon-Ho Kim;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.48-55
    • /
    • 2001
  • In this paper, sensitivity analysis for the coupled axial and torsional undamped free vibration of ship propulsion shafting is proposed. The purpose of this study is to effectively and optimally design the resonance frequencies of propulsion shafting affecting barred speed range of main engine by modifying the diameters of intermediate and propeller shafts. The presented method is validated by the sensitivity analysis for the natural frequencies of propulsion shafting of two real large merchant ships. In addition, the changes of natural frequency and resonance main engine speed are discussed in case that the diameter is varied within the range regulated by the rule of shipping register.

  • PDF